
A Unified AI Accelerator Interface for Scalable

RISC-V Architectures
Fucong Qiu1,2, Mingjin Gao1,2, Dan Tang1,3, Yungang Bao1,2 and Tao Xie3,4

1State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3Beijing Open Source Chip Research Institute
4School of Computer Science, Peking University

RISC-V Summit Europe 2025

Conclusion

◼ In this paper, we have proposed a flexible, open AI

accelerator interface that supports a variety of RISC-V

extensions, diverse data access, virtual memory

mechanisms, and decoupled microarchitectural designs via

flexible decoding and CSR management.

◼ While the interface exhibits strong theoretical scalability,

adaptability, and performance, practical validation is still

required. Future efforts plan to prioritize design refinements

and real-world testing to assess its efficacy.

Features

• Unified AI Accelerator Interface. Besides supporting vector

acceleration, the interface also incorporates matrix and

tensor modes, enabling broader applicability across a range

of AI tasks.

• Diverse Data Access Paths. Building on existing data

access mechanisms, the interface also integrates multiple

data paths, including L1 cache access, bus access,

coprocessor extension access, and inter-coprocessor data

movement, to support various AI dataflow patterns.

• Virtual Memory Interface. The interface allows accelerators

to acquire physical addresses from the processor by

supporting both private TLBs and direct MMU access,

ensuring flexible and efficient memory address translation.

• Decoupled Microarchitecture Design. In contrast to

traditional interfaces, which impose rigid microarchitectural

constraints, our proposed design supports multiple

decoupled architectures, including flexible instruction

decoding schemes and versatile accelerator CSR

management strategies, improving compatibility with diverse

accelerator designs and system configurations.

Introduction

◼ As an open and scalable instruction set architecture, RISC-V

has rapidly gained widespread acceptance across computing

tasks. To enhance processor versatility, general-purpose

interfaces like the Rocket Custom Coprocessor Interface

(ROCC) [1] and Core-V eXtension Interface (CV-X-IF) [2]

were introduced.

◼ While effective for general applications, these interfaces

struggle to meet AI workloads’ demands—specifically

massive parallelism and high-throughput data processing.

Specialized interface solutions have emerged to address AI-

specific challenges. The Open Vector Interface (OVI),

proposed by Semidynamic, is a notable example that extends

vector accelerator capabilities [3].

◼ However, such specialized interfaces typically cater to

specific accelerator classes, thereby limiting their adaptability

and expandability. In response, this work proposes a unified

interface that serves as a comprehensive solution for diverse

AI accelerator.

References

[1] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C.

Celio et al. “The Rocket Chip Generator”. In: EECS Department, University

of California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (Apr. 2016),

pp. 6–2.

[2] OpenHW Group. OpenHWGroup Specification: Core-V eXtension

Interface (CV-X-IF). OpenHW Group, 2024. [Online]. Available:

https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/v1.0.0/

[3] Semidynamics. AVISPADO - VPU Interface. GitHub, 2021. [Online].

Available: https://github.com/semidynamics/OpenVectorInterface

Components

Figure 1: Overview of signals interfacing with accelerator 1.

◼ Instruction Issuance and Response

• Issue coordinates instruction delivery and status feedback.
Supports multiple decode schemes and omits scalar-operand

addresses if the first-stage decoder resides on the processor.

• Scalar transmits scalar operands and incorporates a flexible

CSR management mechanism, relaying CSR data when

centralized in the processor.

• Commit handles instruction cancellation during mispredicted

speculative execution.

• Completed returns execution results to the processor and

shares CSR status under centralized management.

◼ Virtual Memory

• Translation provides PTEs or physical addresses to

accelerator, supporting private TLB or direct MMU access,

and reports memory access exceptions to the processor.

◼ Data Access and Movement

• Mem_fast and Mem_far respectively enable rapid access to

L1 and remote L2/L3 caches or memory, both leveraging ID

signals to support out-of-order memory accesses.

• Extension facilitates partial access to register data within the

accelerator by conveying data and index information.

• Move handles data movement between coprocessors by

transmitting addresses, indices and synchronous signals.

CPU

ACC 1

EXT

ACC 2

BUS

 Scalar: id + data + csr

 Commit: id + kill

 Completed: id + data + csr

 Issue.req: id + inst
 Issue.resp: accept + wr_addr

 Mem_fast.req: id + addr + we + mask + data
 Mem_fast.resp: id + data + excp

 Translation.req: id + vaddr
 Translation.resp: id + paddr + pte

 Translation.excp: id + vaddr
 Translation.flush

 Issue.extend: accept

 Issue.req: id + inst

 Extension.rd: idx
 Extension.sync: id + csr

 Extension.wb: idx + data
 Extension.rd: data

 Move.resp: data

 Move.issue: id + addr + we

 Move.req: data
 Move.sync: sync_start + sync_end

 Mem_far.req: id + addr + we + mask + data + size
 Mem_far.resp: id + data

	幻灯片 1

