
Optimizing Hardware for Neural Network
Inference using Virtual Prototypes

Jan Zielasko1,2 and Rolf Drechsler1,2 ∗

1Institute of Computer Science, University of Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, Germany

Abstract

Identifying the optimal hardware configuration for running neural network inference on ultra-low-power edge
devices is critical for reducing cost and maximizing performance of smart applications. Tailoring hardware
designs to specific applications significantly increases resource utilization, which is essential to meet the strict
performance and energy constraints. Virtual Prototypes enable early design-space exploration before any actual
hardware is built, thus shortening time-to-market. They are essentially an executable model of the entire hardware
platform and can model intricate hardware/software interactions including accelerators, while still being fast and
easy to use. Building on prior work, we demonstrate how Virtual Prototypes can uncover previously unknown
hardware optimizations using representative edge AI workloads from the MLPerf Tiny benchmark suite.

Introduction
Recent advances in AI have increased the demand for
running complex applications such as Neural Networks
(NNs) on resource-constrained devices, e.g., for sensor
data processing on embedded systems or Internet of
Things (IoT) nodes [1, 2, 3]. While General-Purpose
Processors (GPPs) are commonly used as the computa-
tional core for System-on-Chip (SoC) designs, they are
inefficient for NN inference. To meet the strict require-
ments for energy consumption and performance, GPPs
can be tailored to applications to increase their effi-
ciency. Previous approaches address this challenge at
various abstraction levels ranging from the high-level
down to the gate-level (e.g. [4, 5]). Virtual Prototypes
(VPs) such as the RISC-V VP [6] can model the entire
Hardware (HW) platform including subsystems such
as peripherals, accelerators and other subsystems of
the SoC. As such, VPs enable early Software (SW)
development and analysis before any real HW is built.
VPs achieve simulation speeds orders of magnitude
faster than RTL simulation by modeling the SoC with
Transaction Level Modeling (TLM), commonly imple-
mented with SystemC [7]. Previous work introduces
the RISC-V Opt VP [8] as an analysis platform for
HW optimization. The tool traces the execution of
RISC-V applications on the instruction level and ana-
lyzes every encountered instruction sequence up to a
set depth. [8] demonstrates, that the tool can be used
to identify a wide range of different HW optimizations
for typical edge applications found in the EmbenchTM

suite 1. Compared to previously analyzed applications
∗Corresponding author: Jan.Zielasko@DFKI.de .
This work was supported by the German Federal Ministry of
Education and Research (BMBF) within projects ECXL under
grant no. 01IW22002 and FAIRe (grant no. 01IS23074).
1 https://www.embench.org/

like sha256 or RIOT OS, inference of NNs poses a
much greater challenge, as the critical section is almost
always part of the activation function or matrix mul-
tiplication. In this work, we analyze a set of typical
edge AI applications to investigate, how effectively
this approach identifies optimizations in more difficult
inference scenarios. We chose a selection of applica-
tions using the TensorFlow Lite for Microcontrollers 2

framework. This set includes the MLPerf Tiny [3]
benchmark set, which consists of tasks like anomaly
detection, keyword spotting and image classification.
Our results show that we are able to identify the ex-
pected types of optimization candidates (e.g. MAC),
but also a set of instruction sequences outside the ma-
trix multiplication kernel, which are non-trivial to find
from either the source or gate-level. The tool3 and all
ML benchmarks [3] are available as open-source.

Methodology
As a first step to identifying HW optimizations, we
configure the VP to represent a minimal configuration
that can run the target application, i.e. configuring
the supported extensions and setting memory to en-
compass the tensor arena size required to run the NN.
When executing an application, the VP traces the
execution of every instruction including all required
metadata about the system and any inter-instruction
dependencies. It stores the information in k-trees with
a predetermined maximum depth. A separate tree is
created for each instruction, containing all sequences
starting with that instruction. The bound limits the
length of instruction sequences considered for opti-
mization. As determined in previous work, a bound
2 https://github.com/tensorflow/tflite-micro
3 https://github.com/agra-uni-bremen/opt-vp

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:Jan.Zielasko@DFKI.de


Figure 1: Instruction distribution for image classification

ADD LW
MUL

BGE
BNE

BEQ
BLT

ADDI
LB

Othe
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
cc

ur
re

nc
e

1e8

ADD
19.7%

MUL

ADD

MUL

ADDI

ADDI

ADD

LB

BNE

LW

MUL

ADD

BNE

ADD

ADDI

ADDI

Other

19.3%9.7% 9.7% 9.7% 9.7%

51.9%

Figure 2: □ Other, ■ MAC, ■ Addition, ■ Branching

of 50 is sufficient to discover all relevant sequences
for almost any application. Further analysis shows,
that in practice, a bound of 10 is enough to discover
all relevant sequences for smaller applications. If the
bound is set too low, the tool suggests increasing it to
uncover additional sequences.

Case Study
We demonstrate the tool in a case study using the im-
age classification reference model from MLPerf Tiny.
It is a ResNet8 model trained on the CIFAR10 dataset
able to classify low resolution images of 10 different
categories. Running a single inference cycle executes
approximately 608 million instructions, simulating 23.2
seconds. The execution time of the simulation and
tracing largely depends on the tree bound and takes
around 1h with depth 7. Analysis of the trees, i.e.
exhaustively exploring all available sequences takes
less than 1 second. Figure 1 shows the distribution
of executed instructions among all sequences. ADD
(19.7%) and LW (17.9%) were most frequently exe-
cuted with only 9 instructions amounting to (98.7%)
of total execution. Figure 2 represents an excerpt
from the tree containing all sequences starting with
an ADD. As expected, by analyzing the trees we are
able to identify multiple different variations of MAC
operations. Two of which are contained in the ADD
tree highlighted in ■. ■ highlights a chain of ADD
operations related to the matrix multiplication. The
instructions highlighted in ■ contain part of the most
interesting sequence discovered by our analysis. They
are part of a set of longer sequences containing a num-

ber of branch and load instructions depending on a
single value from memory. This makes the sequence a
good candidate for parallel execution as a new custom
instruction.

Discussion and Future Work
In this extended abstract we presented an extension
to the VP-driven approach, and analyzed a range of
ML applications. We found that we are able to iden-
tify typical ML optimizations like MAC operations.
Additionally, we discovered that the tool can be used
to identify additional HW optimizations that are non-
trivial even for other analysis approaches. Comparing
the results from classifying different images or running
multiple inference cycles shows that the sequences re-
main almost identical with differences of fewer than
2000 instructions across runs (compared to a total of
6 ∗ 108) between different images in the case study.
This implies that a HW accelerator designed for a rep-
resentative case should generalize well across typical
inputs. Common patterns across different ML appli-
cations suggest that designs could even be reused for
new applications. Analyzing the similarities can then
identify the accelerator with the highest reusability.
For future work we plan to automatically generate
custom instructions or HW accelerators using Spinal-
HDL [9] to assess the HW performance improvement
beyond our program-level analysis.

References
[1] John L. Hennessy and David A. Patterson. “A new golden

age for computer architecture”. In: Commun. ACM 62.2
(Jan. 2019), pp. 48–60. issn: 0001-0782. doi: 10.1145/
3282307. url: https://doi.org/10.1145/3282307.

[2] Carsten Bormann et al. Terminology for Constrained-Node
Networks. RFC 7228. May 2014. doi: 10.17487/RFC7228.
url: https://www.rfc-editor.org/info/rfc7228.

[3] Colby Banbury et al. “MLPerf Tiny Benchmark”. In: Pro-
ceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks (2021).

[4] Weier Wan et al. “A compute-in-memory chip based on
resistive random-access memory”. In: Nature 608 (). doi:
10.1038/s41586-022-04992-8.

[5] Yijin Guan et al. “FP-DNN: An Automated Framework for
Mapping Deep Neural Networks onto FPGAs with RTL-
HLS Hybrid Templates”. In: FCCM. 2017, pp. 152–159.
doi: 10.1109/FCCM.2017.25.

[6] V. Herdt et al. “RISC-V based virtual prototype”. In:
Journal of Systems Architecture 109 (2020).

[7] F. Ghenassia. Transaction-Level Modeling with SystemC.
New York: Springer, 2010.

[8] J. Zielasko and R. Drechsler. “Virtual Prototype Driven
Application Specific Hardware Optimization”. In: FDL.
IEEE, 2023, pp. 1–8.

[9] Charles Papon and Yindong Xiao. SpinalHDL. url: https:
//github.com/SpinalHDL/SpinalHDL.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.17487/RFC7228
https://www.rfc-editor.org/info/rfc7228
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1109/FCCM.2017.25
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL

	Introduction
	Methodology
	Case Study

	Discussion and Future Work

