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Abstract 

This presentation focuses on optimizing the open-source llama.cpp project for the RISC-V vector extension. Specifically, 

we evaluate the performance of the LLM models running on an Andes AX45MPV RVV core implemented on FPGA. With  

VLEN 512, the 4-bit TinyLlama 1.1B model achieves a 21.7x speedup, and scaling results suggest that a single RVV core 

can achieve near real-time inference. Additionally, ongoing efforts are focused on optimizing smaller DeepSeek-related 

models to enhance efficiency on RISC-V hardware. 

Introduction 

The rapid advancement of large language models 

(LLMs) has transformed natural language processing, 

enabling sophisticated text understanding and generation. 

Among them, the open-source llama.cpp project has gained 

recognition for its efficiency and flexibility. Meanwhile, 

RISC-V has emerged as a powerful open ISA, well-suited 

for embedded systems. 

This presentation explores the optimization of llama.cpp 

for the RISC-V V (RVV) extension [1] and evaluates its 

performance on a Andes RVV core using FPGA.  

LLAMA CPP and Recent LLM Development 

llama.cpp [2] is an open-source project for large 

language model inference and is written in C++ language. It 

is suitable for embedded systems and can be ported to bare-

metal environment with not too much effort. Language 

models hosted by Hugging Face can be easily converted to 

its gguf format, which can be executed by the llama.cpp 

runtime. Various notable LLM models are already converted 

for llama.cpp. For instance, the widely used LLaMA 2 7B 

model [3], as well as the TinyLLaMA model [4], which is 

tailored for resource-constrained embedded devices.  

The rise of Mixture of Experts (MoE) models offers a 

promising approach to improving inference efficiency for 

large models. MoE dynamically activates only a subset of 

expert networks per input, reducing computation while 

maintaining model capacity. Recent MoE architectures, such 

as DeepSeek [5], leverage sparse activation to achieve high 

efficiency. Notably, both DeepSeek and various distilled 

models are now available in gguf format and can be executed 

with llama.cpp. 

LLAMA CPP with RISC-V V Extension 

The upstream llama.cpp project includes RVV 

optimizations for quantized formats and has been reported to 

achieve up to a 3.5x speedup on a specific VLEN 256 real-

chip platform. However, the upstream implementation is 

reported to contain bugs that prevent it from generating 

human recognizable tokens under VLEN 512, limiting its 

flexibility on higher-capacity vector configurations. 

Optimization for Mixed Quantized and 

Floating-Point Computation 

Matrix multiplication is the dominant operation in large 

language model inference. To compute quantized model in 

llama.cpp, matrix and vector computations are decomposed 

into quantized blocks, where each block represents a chunk 

of data with some quantization scale information. The 

default block size is 32, with smaller block sizes offering 

higher precision at the cost of increased model sizes.  

To accelerate matrix multiplication for quantized blocks 

for larger VLENs, we rearrange data into an interleaved 

format, enhancing data reuse and improving efficiency for 

dot product-like instructions. Beyond quantized 

optimizations, we also optimize certain floating-point 

computation using RVV. Despite weights being stored as 

integer types in quantized models, floating-point 

computation remains integral to the inference process. Fig. 1 

illustrates a partial computation graph of TinyLLaMA, 

revealing the intermixing of quantized and floating-point 

computations during execution. 

Performance 

Table 1 presents the inference performance of a 4-bit 

quantized TinyLLaMA 1.1B model measured by llama.cpp 

llama-bench, running on the AX45MPV FPGA. The 

AX45MPV core features VLEN 512 / DLEN 512, operating 

at 40 MHz, with performance results scaled to 1 GHz. The 

Andes RVV optimizations achieve a 21.7x speedup in token 

generation compared to the upstream scalar implementation.  

Table 2 provides a breakdown of operation latencies 

within the TinyLLaMA model. In llama.cpp, the 

MUL_MAT operation includes both matrix multiplication 

and vector product computations. After Andes RVV 

optimization, matrix multiplication remains the dominant 

operation, while SOFT_MAX, currently computed as a 
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scalar operation, presents an opportunity for further 

optimization using RVV acceleration. 

 

 

 
Fig 1. Partial computation graph of TinyLLaMA model in 

llama.cpp 

 

Model SW 
Option 

tg128 
(Tokens / 
Sec) 

tg128 
Scaleup 
1GHz 

Speedup 

TinyLLaMA 
1.1B 

Scalar 0.0105 0.2625 1x 

Andes 
RVV 

0.2279 5.6975 21.7x 

Table 1. TinyLLAMA 1.1B 4-bit single-core performance 

scaled up to 1GHz 

 

Table 3 shows the performance of smaller DeepSeek-

related models run on an Andes scalar real-chip platform at 

1.6 GHz with a smaller L2 cache. The scalar results indicate 

that DeepSeek v2 Lite Chat 16B outperforms LLaMA 2 7B 

because it is a Mixture of Experts (MoE) model, activating 

fewer parameters during inference. Additionally, DeepSeek 

v2 Lite Chat surpasses DeepSeek R1 Distill Qwen 1.5B, as 

the latter remains a dense model even after distillation. Table 

4 shows the preliminary RVV optimization result of 4-bit 

DeepSeek v2 Lite Chat 16B. 

Conclusion 

Our results indicate that a single RVV core with VLEN 

512 is expected to achieve near real-time inference for the 4-

bit TinyLLaMA 1.1B model.  

Optimization and performance evaluation are ongoing, 

and future updates will provide detailed results on 

optimizing smaller DeepSeek-related models using RVV. 

We anticipate that 4-bit DeepSeek v2 Lite Chat 16B could 

achieve near real-time inference with a small number of 

cores when optimized effectively using RVV. 

Operation Percentage 

ADD 0.38% 

MUL 0.91% 

RMS_NORM 0.85% 

MUL_MAT 80.42% 

CPY 0.20% 

CONT 0.07% 

RESHAPE 0.06% 

VIEW 0.12% 

PERMUTE 0.06% 

TRANSPOSE 0.03% 

GET_ROWS 0.01% 

SOFT_MAX 12.79% 

ROPE 0.35% 

UNARY 3.76% 

Total 100% 

Table 2. TinyLLaMA 1.1B 4-bit RVV op latency 

 

Model Model 

Type 
tg128 
(Tokens 

/ Sec) 

tg128 

Scaledown 

1GHz 

TinyLLaMA 1.1B Dense 0.4080 0.2550 

LLaMA 2 7B Dense 0.0632 0.0395 

DeepSeek v2 Lite 

Chat 16B 
MoE 0.1503 0.0939 

DeepSeek R1 

Distill Qwen 1.5B 
Dense 0.1887 0.1173 

Table 3. Smaller DeepSeek related 4-bit models run as 

scalar on real-chip platform 

 

Model SW 
Option 

tg128 
(Tokens / 
Sec) 

tg128 
Scaleup 
1GHz 

DeepSeek v2 
Lite Chat 16B 

Andes 
RVV 

0.0437 1.0925 

Table 4. Preliminary DeepSeek v2 Lite Chat 16B 4-bit 

single-core performance scaled up to 1GHz 
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