
RISC-V Summit Europe, Paris, 12-15th May 2025 1

Accelerating Quantized LLM Inference for Embedded RISC-

V CPUs with Vector Extension (RVV)
Yueh-Feng Lee, Yi-Jui Chu, Chih-Chung Huang, Heng-Kuan Lee

Andes Tech.

Abstract

This presentation focuses on optimizing the open-source llama.cpp project for the RISC-V vector extension. Specifically,

we evaluate the performance of the LLM models running on an Andes AX45MPV RVV core implemented on FPGA. With

VLEN 512, the 4-bit TinyLlama 1.1B model achieves a 21.7x speedup, and scaling results suggest that a single RVV core

can achieve near real-time inference. Additionally, ongoing efforts are focused on optimizing smaller DeepSeek-related

models to enhance efficiency on RISC-V hardware.

Introduction

The rapid advancement of large language models

(LLMs) has transformed natural language processing,

enabling sophisticated text understanding and generation.

Among them, the open-source llama.cpp project has gained

recognition for its efficiency and flexibility. Meanwhile,

RISC-V has emerged as a powerful open ISA, well-suited

for embedded systems.

This presentation explores the optimization of llama.cpp

for the RISC-V V (RVV) extension [1] and evaluates its

performance on a Andes RVV core using FPGA.

LLAMA CPP and Recent LLM Development

llama.cpp [2] is an open-source project for large

language model inference and is written in C++ language. It

is suitable for embedded systems and can be ported to bare-

metal environment with not too much effort. Language

models hosted by Hugging Face can be easily converted to

its gguf format, which can be executed by the llama.cpp

runtime. Various notable LLM models are already converted

for llama.cpp. For instance, the widely used LLaMA 2 7B

model [3], as well as the TinyLLaMA model [4], which is

tailored for resource-constrained embedded devices.

The rise of Mixture of Experts (MoE) models offers a

promising approach to improving inference efficiency for

large models. MoE dynamically activates only a subset of

expert networks per input, reducing computation while

maintaining model capacity. Recent MoE architectures, such

as DeepSeek [5], leverage sparse activation to achieve high

efficiency. Notably, both DeepSeek and various distilled

models are now available in gguf format and can be executed

with llama.cpp.

LLAMA CPP with RISC-V V Extension

The upstream llama.cpp project includes RVV

optimizations for quantized formats and has been reported to

achieve up to a 3.5x speedup on a specific VLEN 256 real-

chip platform. However, the upstream implementation is

reported to contain bugs that prevent it from generating

human recognizable tokens under VLEN 512, limiting its

flexibility on higher-capacity vector configurations.

Optimization for Mixed Quantized and

Floating-Point Computation

Matrix multiplication is the dominant operation in large

language model inference. To compute quantized model in

llama.cpp, matrix and vector computations are decomposed

into quantized blocks, where each block represents a chunk

of data with some quantization scale information. The

default block size is 32, with smaller block sizes offering

higher precision at the cost of increased model sizes.

To accelerate matrix multiplication for quantized blocks

for larger VLENs, we rearrange data into an interleaved

format, enhancing data reuse and improving efficiency for

dot product-like instructions. Beyond quantized

optimizations, we also optimize certain floating-point

computation using RVV. Despite weights being stored as

integer types in quantized models, floating-point

computation remains integral to the inference process. Fig. 1

illustrates a partial computation graph of TinyLLaMA,

revealing the intermixing of quantized and floating-point

computations during execution.

Performance

Table 1 presents the inference performance of a 4-bit

quantized TinyLLaMA 1.1B model measured by llama.cpp

llama-bench, running on the AX45MPV FPGA. The

AX45MPV core features VLEN 512 / DLEN 512, operating

at 40 MHz, with performance results scaled to 1 GHz. The

Andes RVV optimizations achieve a 21.7x speedup in token

generation compared to the upstream scalar implementation.

Table 2 provides a breakdown of operation latencies

within the TinyLLaMA model. In llama.cpp, the

MUL_MAT operation includes both matrix multiplication

and vector product computations. After Andes RVV

optimization, matrix multiplication remains the dominant

operation, while SOFT_MAX, currently computed as a

2 RISC-V Summit Europe, Paris, 12-15th May 2025

scalar operation, presents an opportunity for further

optimization using RVV acceleration.

Fig 1. Partial computation graph of TinyLLaMA model in

llama.cpp

Model SW
Option

tg128
(Tokens /
Sec)

tg128
Scaleup
1GHz

Speedup

TinyLLaMA
1.1B

Scalar 0.0105 0.2625 1x

Andes
RVV

0.2279 5.6975 21.7x

Table 1. TinyLLAMA 1.1B 4-bit single-core performance

scaled up to 1GHz

Table 3 shows the performance of smaller DeepSeek-

related models run on an Andes scalar real-chip platform at

1.6 GHz with a smaller L2 cache. The scalar results indicate

that DeepSeek v2 Lite Chat 16B outperforms LLaMA 2 7B

because it is a Mixture of Experts (MoE) model, activating

fewer parameters during inference. Additionally, DeepSeek

v2 Lite Chat surpasses DeepSeek R1 Distill Qwen 1.5B, as

the latter remains a dense model even after distillation. Table

4 shows the preliminary RVV optimization result of 4-bit

DeepSeek v2 Lite Chat 16B.

Conclusion

Our results indicate that a single RVV core with VLEN

512 is expected to achieve near real-time inference for the 4-

bit TinyLLaMA 1.1B model.

Optimization and performance evaluation are ongoing,

and future updates will provide detailed results on

optimizing smaller DeepSeek-related models using RVV.

We anticipate that 4-bit DeepSeek v2 Lite Chat 16B could

achieve near real-time inference with a small number of

cores when optimized effectively using RVV.

Operation Percentage

ADD 0.38%

MUL 0.91%

RMS_NORM 0.85%

MUL_MAT 80.42%

CPY 0.20%

CONT 0.07%

RESHAPE 0.06%

VIEW 0.12%

PERMUTE 0.06%

TRANSPOSE 0.03%

GET_ROWS 0.01%

SOFT_MAX 12.79%

ROPE 0.35%

UNARY 3.76%

Total 100%

Table 2. TinyLLaMA 1.1B 4-bit RVV op latency

Model Model

Type
tg128
(Tokens

/ Sec)

tg128

Scaledown

1GHz

TinyLLaMA 1.1B Dense 0.4080 0.2550

LLaMA 2 7B Dense 0.0632 0.0395

DeepSeek v2 Lite

Chat 16B
MoE 0.1503 0.0939

DeepSeek R1

Distill Qwen 1.5B
Dense 0.1887 0.1173

Table 3. Smaller DeepSeek related 4-bit models run as

scalar on real-chip platform

Model SW
Option

tg128
(Tokens /
Sec)

tg128
Scaleup
1GHz

DeepSeek v2
Lite Chat 16B

Andes
RVV

0.0437 1.0925

Table 4. Preliminary DeepSeek v2 Lite Chat 16B 4-bit

single-core performance scaled up to 1GHz

References

[1] RISC-V "V" Vector Extension Specification.

https://github.com/riscvarchive/riscv-v-spec

[2] llama.cpp.

https://github.com/ggerganov/llama.cpp

[3] LLaMA 2.

https://llama.meta.com/llama2/

[4] TinyLLaMA.

https://github.com/jzhang38/TinyLlama

[5] DeepSeek.

https://github.com/deepseek-ai

https://github.com/riscvarchive/riscv-v-spec
https://github.com/ggerganov/llama.cpp
https://llama.meta.com/llama2/
https://github.com/jzhang38/TinyLlama
https://github.com/deepseek-ai

