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Abstract 

Leveraging sparsity in neural network weights can significantly enhance efficiency when deploying models on 

mobile and edge devices. However, within the RISC-V ecosystem, a complete solution for sparse inference 

remains unavailable. This proposal identifies the challenges in enabling sparse inference for the RISC-V Vector 

Extension (RVV) and presents preliminary experimental findings that highlight existing gaps. While 

implementation and optimization efforts are ongoing, our goal is to contribute to both the RISC-V community 

and the XNNPACK project. 

Introduction 

Neural network inference presents distinct challenges from 

training. While inference eliminates gradient calculations, 

substantial opportunities for optimization remain in model 

weight storage and computational patterns. 

 

Pruning is a key technique for optimizing neural networks, 

reducing redundant parameters, nodes, or even entire 

channels. Exploiting sparsity provides several advantages: 

reduced storage and memory requirements, lower 

computation demands, and consequently, faster execution. 

 

The widely adopted AI framework stack—including 

TensorFlow Lite [1] and XNNPACK [2]—offers only 

limited support for sparse inference. These frameworks 

primarily target mobile and edge deployments and 

conventionally use NHWC tensor formats. However, 

handling sparse tensors effectively requires NCHW 

microkernels. While this approach introduces constraints, it 

remains flexible enough to support most convolutional 

neural network applications.  

 

Bringing this feature to RISC-V presents two key 

challenges. First, converting dense NHWC models into 

sparse NCHW representations is non-trivial. Second, 

optimizing XNNPACK microkernels for RISC-V platforms 

with RVV is an open problem. 

 

For model conversion, TensorFlow provides official pruning 

tools, but our work leverages the Network Optimizer in the 

AndesAIRE™ NNPILOT toolkit. This tool allows users to 

specify target sparsity levels while continuously monitoring 

accuracy, following the Automated Gradual Pruning 

methodology [3]. Table 1 presents inference results using 

MobileNetV1 on a Pixel 7 Pro, demonstrating the trade-off 

between sparsity and performance. While full details of the 

tool are outside the scope of this proposal, it serves as a 

foundation for our exploration. 

 

 

Table 1: Results of Different Sparsities on Pixel 7 Pro 

 Original 

AndesAIRE 

75% 

Official 

90% 

Inference 

Time 18415µs 15222µs 

 

7981µs 

Speedup 1x 1.21x 2.31x 

Accurarcy 73.40% 72.16% 68.4% 

 

 

Table 2: MobileNetV2 Profile on RVV 

Original 75% Sparsity 

Operation Time Operation Time 

Convolution 

NHWC, F32 

GEMM 

 

 

 

 

940ms 

 

 

 

 

Convolution 

NCHW, F32 

Conv2D 

HWC2CHW 

 

 

 

515ms 

Convolution 

NCHW, F32 

SPMM 

 

 

1324ms 

Fully 

Connected 

NC, F32 

GEMM 

 

 

 

6ms 

Convolution 

NHWC, F32 

DWConv 285ms 

Convolution 

NCHW, F32 

DWConv 

 

 

 

1241ms 

 

Our primary focus is addressing the second challenge: 

optimizing XNNPACK microkernels for RVV. At present, 

XNNPACK includes a general sparse inference framework 

that allows inference on RISC-V CPUs using scalar 

microkernels, leaving the full potential of RVV untapped. As 

a preliminary reference, Table 2 shows the comparison 

between the original MobileNetV2 model and a pruned one 

with 75% sparsity. Both experiments run on the same 

platform, a FPGA at 40MHz with an engineering 

AndesCore™ AX45MPV loaded. The platform supports 
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RVV 1.0 spec and various Andes Custom Vector extensions. 

The results will be further discussed in the Methodology 

section. 

 

Methodologies 

Microkernel Implementation 

To enable sparse inference on RISC-V with the Vector 

Extension (RVV), we focus on key microkernels that 

significantly impact performance. At this stage, our work is 

ongoing, and most of the experimental results in Table 2 

reflect the use of scalar microkernels, with the exception of 

our initial SPMM implementation. 

 

Our long-term goal is to contribute optimized RVV 

implementations to upstream XNNPACK. Through this 

process, we aim to share insights from implementation, 

profiling, and optimization to help establish best practices 

for RVV-based sparse inference development. 

SPMM (Sparse Matrix Multiplication) 

Previous work [4] has provided an initial RVV port for 

sparse inference, but it largely adheres to a traditional SIMD 

design with fixed vector dimensions. Our approach builds on 

this by exploring RVV’s variable-length vector capabilities 

while aligning with existing microkernel structures in 

XNNPACK, thus simplifing residual handling. 

 

The profiling results in Table 2 show that, in the 75% 

sparsity configuration, SPMM accounts for 46% of the total 

execution time and is invoked 34 times. This aligns closely 

with the GEMM microkernel’s role in the original dense 

model, where GEMM is invoked 36 times.  

 

Our ongoing implementation is guided by a reference trial 

on the Pixel 7 Pro, which serves as a target benchmark. 

Further profiling and optimizations are in progress. 

DWConv (Depthwise Convolution) 

Depthwise convolutions contribute 38% of total execution 

time in the pruned model. We are currently developing an 

NCHW-variant RVV microkernel that primarily utilizes 

vslide and vfmacc operations as the baseline. While this 

proof-of-concept is still evolving, early observations suggest 

that RVV can provide notable efficiency improvements over 

scalar implementations.  

Conv2D HWC2CHW 

This format conversion microkernel accounts for 16% of 

total execution time. Given our prior experiences with 

mobile inference optimizations (e.g., Pixel 7 Pro 

experiments), we believe it is possible to further reduce its 

overhead to a negligible level. 

Fine-grained Profiling and Optimization 

The execution profiling data in Table 2 was obtained using 

TensorFlow Lite’s benchmark_model tool. While this tool 

provides execution time measurements, deeper optimization 

requires additional performance metrics, such as cache 

misses and stall cycles. 

Currently, benchmark_model does not provide built-in 

support for these advanced metrics, nor is there a widely 

available RISC-V profiling framework that integrates such 

features. Although developing a comprehensive solution is 

beyond the scope of this work, we are actively monitoring 

ongoing efforts in RISC-V performance monitoring 

standardization. 

Internally, we have developed a manual profiling wrapper 

that extends benchmark_model by interfacing with 

perf_event system calls on Andes platforms. This enables 

direct collection of hardware event counters, providing 

deeper insights into execution behavior. While this is an 

interim solution, it serves as a foundation for further 

optimization efforts in the broader RISC-V community 
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