
RISC-V Summit Europe, Paris, 12-15th May 2025 1

Supporting Sparse Inference in XNNPACK

with RISC-V Vector Extension
Yi-Hung Chen, Hung-Yuan Chang, and Quey-Liang Kao

Andes Technology

Abstract

Leveraging sparsity in neural network weights can significantly enhance efficiency when deploying models on

mobile and edge devices. However, within the RISC-V ecosystem, a complete solution for sparse inference

remains unavailable. This proposal identifies the challenges in enabling sparse inference for the RISC-V Vector

Extension (RVV) and presents preliminary experimental findings that highlight existing gaps. While

implementation and optimization efforts are ongoing, our goal is to contribute to both the RISC-V community

and the XNNPACK project.

Introduction

Neural network inference presents distinct challenges from

training. While inference eliminates gradient calculations,

substantial opportunities for optimization remain in model

weight storage and computational patterns.

Pruning is a key technique for optimizing neural networks,

reducing redundant parameters, nodes, or even entire

channels. Exploiting sparsity provides several advantages:

reduced storage and memory requirements, lower

computation demands, and consequently, faster execution.

The widely adopted AI framework stack—including

TensorFlow Lite [1] and XNNPACK [2]—offers only

limited support for sparse inference. These frameworks

primarily target mobile and edge deployments and

conventionally use NHWC tensor formats. However,

handling sparse tensors effectively requires NCHW

microkernels. While this approach introduces constraints, it

remains flexible enough to support most convolutional

neural network applications.

Bringing this feature to RISC-V presents two key

challenges. First, converting dense NHWC models into

sparse NCHW representations is non-trivial. Second,

optimizing XNNPACK microkernels for RISC-V platforms

with RVV is an open problem.

For model conversion, TensorFlow provides official pruning

tools, but our work leverages the Network Optimizer in the

AndesAIRE™ NNPILOT toolkit. This tool allows users to

specify target sparsity levels while continuously monitoring

accuracy, following the Automated Gradual Pruning

methodology [3]. Table 1 presents inference results using

MobileNetV1 on a Pixel 7 Pro, demonstrating the trade-off

between sparsity and performance. While full details of the

tool are outside the scope of this proposal, it serves as a

foundation for our exploration.

Table 1: Results of Different Sparsities on Pixel 7 Pro

 Original

AndesAIRE

75%

Official

90%

Inference

Time 18415µs 15222µs

7981µs

Speedup 1x 1.21x 2.31x

Accurarcy 73.40% 72.16% 68.4%

Table 2: MobileNetV2 Profile on RVV

Original 75% Sparsity

Operation Time Operation Time

Convolution

NHWC, F32

GEMM

940ms

Convolution

NCHW, F32

Conv2D

HWC2CHW

515ms

Convolution

NCHW, F32

SPMM

1324ms

Fully

Connected

NC, F32

GEMM

6ms

Convolution

NHWC, F32

DWConv 285ms

Convolution

NCHW, F32

DWConv

1241ms

Our primary focus is addressing the second challenge:

optimizing XNNPACK microkernels for RVV. At present,

XNNPACK includes a general sparse inference framework

that allows inference on RISC-V CPUs using scalar

microkernels, leaving the full potential of RVV untapped. As

a preliminary reference, Table 2 shows the comparison

between the original MobileNetV2 model and a pruned one

with 75% sparsity. Both experiments run on the same

platform, a FPGA at 40MHz with an engineering

AndesCore™ AX45MPV loaded. The platform supports

2 RISC-V Summit Europe, Paris, 12-15th May 2025

RVV 1.0 spec and various Andes Custom Vector extensions.

The results will be further discussed in the Methodology

section.

Methodologies

Microkernel Implementation

To enable sparse inference on RISC-V with the Vector

Extension (RVV), we focus on key microkernels that

significantly impact performance. At this stage, our work is

ongoing, and most of the experimental results in Table 2

reflect the use of scalar microkernels, with the exception of

our initial SPMM implementation.

Our long-term goal is to contribute optimized RVV

implementations to upstream XNNPACK. Through this

process, we aim to share insights from implementation,

profiling, and optimization to help establish best practices

for RVV-based sparse inference development.

SPMM (Sparse Matrix Multiplication)

Previous work [4] has provided an initial RVV port for

sparse inference, but it largely adheres to a traditional SIMD

design with fixed vector dimensions. Our approach builds on

this by exploring RVV’s variable-length vector capabilities

while aligning with existing microkernel structures in

XNNPACK, thus simplifing residual handling.

The profiling results in Table 2 show that, in the 75%

sparsity configuration, SPMM accounts for 46% of the total

execution time and is invoked 34 times. This aligns closely

with the GEMM microkernel’s role in the original dense

model, where GEMM is invoked 36 times.

Our ongoing implementation is guided by a reference trial

on the Pixel 7 Pro, which serves as a target benchmark.

Further profiling and optimizations are in progress.

DWConv (Depthwise Convolution)

Depthwise convolutions contribute 38% of total execution

time in the pruned model. We are currently developing an

NCHW-variant RVV microkernel that primarily utilizes

vslide and vfmacc operations as the baseline. While this

proof-of-concept is still evolving, early observations suggest

that RVV can provide notable efficiency improvements over

scalar implementations.

Conv2D HWC2CHW

This format conversion microkernel accounts for 16% of

total execution time. Given our prior experiences with

mobile inference optimizations (e.g., Pixel 7 Pro

experiments), we believe it is possible to further reduce its

overhead to a negligible level.

Fine-grained Profiling and Optimization

The execution profiling data in Table 2 was obtained using

TensorFlow Lite’s benchmark_model tool. While this tool

provides execution time measurements, deeper optimization

requires additional performance metrics, such as cache

misses and stall cycles.

Currently, benchmark_model does not provide built-in

support for these advanced metrics, nor is there a widely

available RISC-V profiling framework that integrates such

features. Although developing a comprehensive solution is

beyond the scope of this work, we are actively monitoring

ongoing efforts in RISC-V performance monitoring

standardization.

Internally, we have developed a manual profiling wrapper

that extends benchmark_model by interfacing with

perf_event system calls on Andes platforms. This enables

direct collection of hardware event counters, providing

deeper insights into execution behavior. While this is an

interim solution, it serves as a foundation for further

optimization efforts in the broader RISC-V community

References

[1] Google. TensorFlow Lite. TensorFlow, 2025.

Available at: https://www.tensorflow.org/lite. [Accessed

2025-02-07].

[2] Google. XNNPACK. GitHub, 2025. Available at:

https://github.com/google/XNNPACK. [Accessed 2025-02-

07].

[3] Zhu, Michael, and Suyog Gupta. "To prune, or not to

prune: exploring the efficacy of pruning for model

compression." arXiv preprint arXiv:1710.01878 (2017).

[4] Mihai Olinovici, XNNPACK Pull Request #7116.

GitHub, 2025. Available at:

https://github.com/google/XNNPACK/pull/7116. Accessed:

[2024-02-07].

https://github.com/google/XNNPACK
https://github.com/google/XNNPACK/pull/7116

