
V-Seek: Accelerating LLM Reasoning on
Open-hardware Server-class RISC-V Platforms

Javier J. Poveda Rodrigo†, Mohamed Amine Ahmdi†*, Alessio Burrello‡,
Daniele Jahier Pagliari‡ and Luca Benini*∗

†DAUIN, Politecnico of Turin, Turin, Italy
*Integrated Systems Laboratory (IIS), ETH Zurich

Abstract

The recent exponential growth of Large Language Models (LLMs) has relied on GPU-based systems. However,
CPUs are emerging as a flexible and lower-cost alternative, especially when targeting inference and reasoning
workloads. RISC-V is rapidly gaining traction in this area, given its open and vendor-neutral ISA. However,
the RISC-V hardware for LLM workloads and the corresponding software ecosystem are not fully mature and
streamlined, given the requirement of domain-specific tuning. This paper aims at filling this gap, focusing on
optimizing LLM inference on the Sophon SG2042, the first commercially available many-core RISC-V CPU
with vector processing capabilities. On two recent state-of-the-art LLMs optimized for reasoning, DeepSeek R1
Distill Llama 8B and DeepSeek R1 Distill QWEN 14B, we achieve 4.32/2.29 token/s for token generation and
6.54/3.68 token/s for prompt processing, with a speed up of up 2.9×/3.0× compared to our baseline.

Introduction

Hyperscalers (e.g., AWS) and AI deployment compa-
nies (e.g., OpenAI) typically accelerate LLM work-
loads using GPU clusters or dedicated accelerators
such as Tensor Processing Units (TPUs). However,
many-core CPU acceleration of LLMs has also been
recently explored [1], as it provides advantages of lower
hardware cost and enhanced flexibility, especially rel-
evant for on-premise and low-latency edge servers.
While existing studies mainly target x86 and ARM,
recent many-core chips based on the flexible and open-
source RISC-V Instruction Set Architecture (ISA) are
relatively unexplored [2]. To bridge this gap, this
work adapts and optimizes a state-of-the-art LLM
inference framework (llama.cpp [3]) for the first com-
modity general-purpose, many-core RISC-V platform
(Sophon SG2042 [2]).On two recent open-source LLMs
optimized for reasoning (DeepSeek R1 Distill Llama
8B/QWEN 14B), we show speedups over a baseline
llama.cpp implementation of up to 3.0× in token gen-
eration and 2.8× in prompt processing (i.e., prefill) at
4-bit precision, reaching a throughput of 4.32/2.29 and
6.54/3.68 tok/s, respectively. On vanilla Llama 7B, we
achieve 6.63 and 13.07 tok/s for generation and prefill,
i.e., a 4.3×/5.5× speedup w.r.t. the baseline, and
1.65× better w.r.t. the best-reported results on the
SG2042 [4], while being competitive with CPU-based
inference on the incumbent x86 architecture.

Methods

To explore the available alternatives to optimize LLM
inference on RISC-V server-class platforms, we target
the MILK-V Pioneer, comprising the 64-core Sophon
∗Corresponding author: javier.poveda@polito.it

SG2042 and 128GB of DRAM memory. A block
diagram is shown in Fig. 1-center. We identify three
directions from which the problem can be attacked, in
SW, inspired by works on other architectures [5, 6, 7]:
i) Developing optimized and, if supported, quantized
kernels for key LLM layers, that fully exploit the
HW, coping with its memory infrastructure, pipeline,
and vectorization; Fig.1-right, shows the pseudocode
of our proposed kernel: first, the fp32 input (vector
or thin matrix) is quantized to int8; then, two nested
loops are executed to perform a GEMV operation, the
outermost iterating on the rows of input matrix A,
and the innermost on its columns. After the column
loop ends, de-quantization is applied, combining scale
factors from A blocks and B to produce an output
fp32 value. This new kernel exploits the platform’s
vector units while also optimizing data locality.
ii) Choosing a suitable compilation toolchain, sup-
porting advanced optimization passes and exploiting
the available ISA extensions. In our case, kernels are
compiled with the Xuantie fork of GCC 10.4, as it is
the only one supporting the HW vector units of the
Sophon SG2042. Instead, for the whole llama.cpp
framework, we consider two alternatives: GCC 13.2,
and Clang 19 (Xuantie GCC 10.4 is not compatible
with the latest llama.cpp release).
iii) Optimizing model mapping, specifically
pages/thread allocation, addressing this type of
system’s complex memory hierarchy. Namely, we
optimize Non-uniform Memory Access (NUMA)
latency exploring different numactl options combined
in 4 policies: i) NUMA Balancing on, all other options
off, ii) all options off, iii) Balancing off+Core Binding
on, iv) Balancing off+Memory Interleaving on.

We apply our optimizatons to the llama.cpp [3]
framework, testing on 3 open-source LLMs of increas-

1

mailto:javier.poveda@polito.it


Figure 1: From left: optimization flow and contributions. SG2042 block diagram. Pseudocode of the proposed kernel.

64 128 256 512 1024 2048 4096 8192 11008 16384
Square Matrix Size

0

1

2

3

4

5

6

7

8

G
O

P
S

OpenBLAS sgemm

OpenBLAS sgemv

GGML scalar

GGML+RVV 

Ours

Figure 2: Matrix vector multiplication size scalability test

ing size, with Q4_0 quantization (vanilla Llama 7B,
DeepSeek R1 Distill Llama 8B, DeepSeek R1 Distill
QWEN 14B, referred to as 7B, 8B and 14B below).

Results

To show the results of our optimization, we executed
the prefill of the three LLMs with user prompt "Ex-
plain to me what is RISC-V, what are its principles
and why it is so cool?" (22 tokens), while we aver-
aged the token generation performance over 256 test-
generated tokens. Kernel Scaling. Fig.2 shows the
single-thread scalability of multiple baseline kernels
(llama.cpp’s GGML and OpenBLAS’s defaults) and of
our proposed one. Compared to the best baseline, we
improve the GOPS by +38.3% on average, peaking at
+56.3% at matrix size 1024.

1 2 4 8 16 32 64
Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
h
ro

u
gh

p
u
t 

(t
ok

en
/s

ec
) GCC 13.2

CLANG 19.0

Figure 3: Compilers comparison scaling the n. of threads
for DeepSeek’s 8B model token gen., Bar, and prefill, Line.

Compiler exploration. In Fig.3, we evaluate
DeepSeek’s 8B model inference when compiling with
Clang or GCC, using our proposed kernel. Clang 19
constantly outperforms GCC 13.2, reaching average
performance gains of 34% and 25% for token gener-
ation and prefill, respectively. The crucial reason is
the combination of ISA extension support, and more
advanced compilation passes (e.g., more aggressive
in-lining and loop unrolling). Regardless of the com-
piler used, using > 32 threads leads to a performance
loss. This behavior is attributed to the default NUMA
balancing policy, which is suboptimal for LLM infer-
ence due to the predictable nature of the workload,

leading to a high number of thread and memory page
migrations.

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t 

(t
o
k
en

/s
ec

) (1):Numa balancing: on

(2):NUMA balancing: off

(3):(2) + Core Binding

(4):(2) + Mem Interleave

Figure 4: NUMA policies exploration on DeepSeek’s 8B
model. Token generation shown with bars, prefill with lines.

NUMA policy impact. Indeed, with the NUMA
balancing off and memory interleaving on, as expected,
we achieve the best results for both token generation
(4.32 tokens/s) and for prefill (6.54 tokens/s) with 64
threads, thanks to the strong reduction in memory
page migration.

Overall, thanks to our optimizations, the 7B, 8B
and 14B LLMs reach a maximum throughput of
13.07/6.54/3.68 tok/s respectively, outperforming a
baseline llama.cpp by up to 5.5×/2.9×/3×. Com-
pared to the best reported result on the SG2042 [4],
we improve the peak throughput on LLama 7B by
1.65×. Versus a similar and more mature x86 plat-
form, the 64-cores AMD EPYC 7742, we improve
the energy efficiency by 1.2×(55 token/s/mW vs 45
token/s/mW) [8].

References

[1] Haihao Shen et al. Efficient LLM Inference on CPUs. 2023.
arXiv: 2311.00502 [cs.LG].

[2] Nick Brown and Maurice Jamieson. Performance charac-
terisation of the 64-core SG2042 RISC-V CPU for HPC.
2024. arXiv: 2406.12394 [cs.DC].

[3] Georgi Gerganov. llama.cpp. https : / / github . com /
ggerganov/llama.cpp. Accessed: 2025-01-21. 2025.

[4] Chiyo Wang. “PerfXLM: A LLM Inference Engine on RISC-
V CPUs”. In: RISC-V Summit Europe. Presented at the
RISC-V Summit Europe 2024. 2024.

[5] Zhihang Yuan et al. LLM Inference Unveiled: Survey and
Roofline Model Insights. 2024. arXiv: 2402.16363 [cs.CL].
url: https://arxiv.org/abs/2402.16363.

[6] Xiao et al. Fu. “Optimizing Attention by Exploiting Data
Reuse on ARM Multi-core CPUs”. In: ICS ’24. Kyoto,
Japan, 2024, pp. 137–149. isbn: 9798400706103.

[7] Jiazhi Jiang et al. “Characterizing and Optimizing Trans-
former Inference on ARM Many-core Processor”. In: ICPP
’22. Bordeaux, France, 2023. isbn: 9781450397339.

[8] Tommaso Pegolotti et al. QIGen: Generating Efficient
Kernels for Quantized Inference on Large Language Models.
2023. arXiv: 2307.03738 [cs.LG].

2

https://arxiv.org/abs/2311.00502
https://arxiv.org/abs/2406.12394
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://arxiv.org/abs/2402.16363
https://arxiv.org/abs/2402.16363
https://arxiv.org/abs/2307.03738

	Introduction
	Methods
	Results

