
V-Seek: Optimizing LLM Reasoning on A
Server-Class General-Purpose RISC-V Platform

Javier J. Poveda Rodrigo, Mohamed Amine Hamdi, Cyril Koenig, Alessio Burrello, Daniele Jahier Pagliari, Luca Benini.
Corresponding author: javier.poveda@polito.it

1. Introduction and Background
While nowadays GPUs are the computational core of LLM inference, this paper adapts and optimizes a state-of-the-art LLM inference framework,
llama.cpp, for the first commodity general-purpose, many-core RISC-V platform, the Sophon SG2042. Takeaways:
• Hardware-specific optimizations across the SW inference stack: Hand-tuned kernels, NUMA Policy adaptation, optimal compilation

toolchain.

• Target Models: Cutting-edge LLM Reasoning Models. DeepSeek R1 Distill Llama 8B and QWEN 14B.

• Performance: we achieve 3.0× speedup compared to the unoptimized llama.cpp baseline in token generation and 2.8× speedup in prompt processing
at 4-bit precision, corresponding to throughputs of 4.32/2.29 tok/s and 6.54/3.68 tok/s, respectively. Our results improve by 1.65× the previously
best-reported performance on the SG2042.

2. V-Seek Optimization Strategies

Left-to-right: optimization flow and contributions. SG2042 block diagram. Pseudocode of the proposed kernel.
We have identified three primary software-driven approaches for addressing optimization to exploit the SG2042 platform:
(i) Developing optimized, and where possible quantized, kernels for key LLM layers (GEMV and GEMM);
(ii) Selecting an appropriate compilation toolchain; we evaluate two alternative toolchains: Xuantie GCC 10.4, GCC 13.2 and Clang 19.
(iii) Optimizing the model NUMA mapping. We explore four distinct policies: (a) NUMA Balancing, (b) all options disabled, (c) Core Binding
enabled, and (d) Memory Interleaving enabled.
Evaluated across three open-source LLMs: vanilla Llama 7B, DeepSeek R1 Distill Llama 8B, and DeepSeek R1 Distill QWEN 14B.

3. Results and State-of-the-art Comparison

64 128 256 512 1024 2048 4096 8192 11008 16384
Square Matrix Size

0

1

2

3

4

5

6

7

8

G
O

P
S

OpenBLAS sgemm

OpenBLAS sgemv

GGML scalar

GGML+RVV 

Ours

Kernel Scaling. Compared to the best baseline (GGML + RVV exten-
sion), we improve the GOPS by +38.3% on average, peaking at +56.3%
at matrix size 1024, thanks to fully exploiting vector units while improv-
ing memory re-usage.

1 2 4 8 16 32 64
Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
h
ro

u
gh

p
u
t 

(t
o
k
en

/s
ec

) Xuantie GCC

CLANG 19.0

GCC 13.2

Compilers. Clang 19 constantly outperforms GCC 13.2, reaching av-
erage performance gains of 34% and 25% for token generation (bar) and
prefill (line), respectively. It is capable of producing maximum perfor-
mance, outperforming Xuantie GCC.

1 2 4 8 16 32 64
Number of Threads

0

1

2

3

4

5

6

7

T
h
ro

u
gh

p
u
t 

(t
ok

en
/s

ec
) (1):Numa balancing: on

(2):NUMA balancing: off

(3):(2) + Core Binding

(4):(2) + Mem Interleave

NUMA Policies. With the NUMA balancing off and memory inter-
leaving on, we achieve the best results for both token generation (4.32 to-
kens/s)(bar) and for prefill (6.54 tokens/s)(line) with 64 threads, thanks
to the strong reduction in memory page migrations.

SoA Comparisons. Overall, thanks to our optimizations, the 7B,
8B, and 14B LLMs reach a maximum throughput of 13.07/6.54/3.68
tok/s respectively, outperforming a baseline llama.cpp by up to
5.5×/2.9×/3×. Compared to the best-reported result on the SG2042,
we improve the peak throughput on LLama 7B by 1.65×. Versus a
similar and more mature x86 platform, the 64-cores AMD
EPYC 7742, we improve the energy efficiency by 1.2× (55
token/s/mW vs 45 token/s/mW).


