
ACE:AtomicCryptographicExtensions
Roberto Avanzi 1, Ruud Derwig 2, Luis Fiolhais 3, Richard Newell 4, Barry Spinney 3 and Tolga Yalcin 1

1 Qualcomm, 2 Synopsys, 3 Independent Researcher, 4 Microchip

Motivation
Selected Use Cases and
Application Domains
• Content Protection, Digital

Identity, Storage Encryption
– Allow to efficiently encrypt/de-

crypt without exposing keys.
– Separate the keys per domain.

• Cloud Computing
– Allow migration of VMs to-

gether with their keys, protect-
ing the latter.

Issues
• Need to manage keys
• Lack of trust
• Need efficient cryptography
• Physical Side Channel Attacks
• µarchitectural SCA

Inadequate Current Solutions
• Key provisioning mechanisms have different interfaces

and security properties ⇒ added complexity for SW.
• Cryptographic accelerators slow to set up, shared with

leakage risks, lack transparent algorithmic agility, and...
• — are system-specific ⇒ SW porting needs extra effort.
• Current crypto ISAs expose keys, lack algorithmic

agility and SCA protection ⇒ security risks; and
• — do not have access to system keys ⇒ limited.

Solution
Architecture
• Context Holding Registers (CHRs) store keys and metadata that only

ACE can access. # registers ∈ [8..32],
• Context Transport Key (CTK): Special register only accessed by Ma-

chine Mode as WO. Used to Wrap/Unwrap CHR states (encrypted and
authenticated) into:

• Sealed Cryptographic Context (SCC): Data chunk containing a CHR’s
state. Can only be unwrapped with same CTK used to wrap.

• Key and metadata can be written in cleartext to a CHR, but not extracted!
• Data read/written from vector regs, but SCCs only from/to memory.
• Operations are atomic, invoked by ace.execute.
• Modes of operation can be supported: ace.message to switch stages.
• Lifecycle CTKs can be derived from the “master” CTK and lifecycle strings

to bind SSCs to specific lifecycles (see next column).

Instructions
• ace.set
• ace.invalidate
• ace.import
• ace.export
• ace.execute
• ace.size
• ace.available
• ace.message

CTKCHR # n
(with internal state)

ACE Microarchitecture

Wrap / Unwrap
Engine

Key, Metadata SCC

Vector
registers

Architecture (segue)
ACE maintains a list of lifecycle strings which are:
permanent/per device/per power cycle, etc.
The index of the lifecycle string is put in CHR/SSC
metadata. The string is combined with the CTK
to use a derived CTK which is used in place of the
original CTK for import/export.
If a lifecycle string is modified, all lifecycle CTKs
derived from it change — and the old values lost.
SSCs wrapped with the old Lifecycle CTKs are thus
invalid.

Microarchitecture
• ACE can provide many algorithms, which must

be all discoverable by ace.available.
Algorithms not initially supported can be added
later and trapped to Machine Mode.

• Side channel protected versions of these algo-
rithms can be provided and exposed.

• ACE can provide access to some system specific
keys through CHRs. The table of such keys is
microarchitecture specific.

• Foreign key-providing HW blocks can be sup-
ported, just add a HW wrapper to create SCCs.

Usage
Example Software Flow
Getting a Key from a Key-Provisioning Applet

Applet

1) Configures CHR #0
with the requested key
2) Returns to Machine

User

Needs a specific key

Machine Mode

1) Restores User's CTK
2) Returns to User

User

Now has a CHR with
the key, can use the
key but cannot see it

Machine Mode

1) Receives request
2) Sets Applet's CTK
3) Forwards request

to Applet

Migration
First Device

VM

Machine

The VM's
CTK

Second Device

Machine

Private Key

Unwrap CTK

VM copy
The MM in the first device

fetches the public key of the
MM of the second device

Transfer VM using the
Cloud Hypervisor method

The first device wraps the
VM's CTK and sends it to
the Second Device, where
only the MM can unwrap it

The MM can configure per-VM or per-World
CTKs to provide key isolation.
It also support migration of VMs together
with the SSCs in its memory: the MM of the
source device will wrap the VM’s CTK using
the public key of the target device’s MM, and
the latter will be able to configure it.

Conclusion
ACE is an ACE!

The ACE instruction set extension and
architecture is a solid proposal to sup-
port a variety of high assurance cryp-
tographic operations in a secure way
— while providing a streamlined and
uniform interface to SW.

♣


