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Abstract

Time series analysis is a topic of great interest, as it enables modeling, prediction, and understanding of
sequential events across various domains. One of the most powerful tools in this field is Matrix Profile, which
allows for scalable and accurate detection of anomalies and repetitive patterns. Specifically, SCAMP has emerged
as one of the most efficient methods for computing the Matrix Profile due to its robustness, efficiency, and high
parallelization capability. Vectorization is a powerful optimization technique for these algorithms, as it exploits
SIMD instructions in modern CPUs to enhance computational efficiency. In this context, the RISC-V Vector
Extension (RVV) introduces a flexible vector model with dynamic lengths. This enables algorithm optimization
across different hardware platforms without requiring source code modifications. In this paper, we vectorize
the SCAMP algorithm using the RISC-V Vector Extension and analyze the achieved speedup compared to
the non-vectorized baseline. Additionally, we explore the benefits of dynamic vectors and compare them with
alternative implementations. The results show speedup improvements of up to 94× over the sequential version
of the algorithm using vectors of 8K bits and floating-point data of 64 bits.

Introduction

Time series analysis aims to study data samples orga-
nized sequentially over time. Its objective is to identify
patterns (motifs), trends, seasonality, and anomalies
(discords). This analysis provides valuable insights in
various applications, including economics, medicine,
meteorology, and epidemiology. The state-of-the-art
approach for pattern and anomaly discovery is the
Matrix Profile [1]. It offers a scalable and automated
solution for time series analysis, providing a represen-
tation of the relationships between each subsequence
within the time series. This enables efficient processing
of large datasets while maintaining reasonable compu-
tation times.

One of the most efficient methods for computing the
Matrix Profile is SCAMP [2]. This algorithm employs
a highly parallel approach that fully exploits Euclidean
distance computations. The performance of these al-
gorithms depends largely on repetitive computations,
including floating point calculations and profile com-
parison operations. Vectorization can optimize these
computations by leveraging SIMD instructions, which
allow executing the same operation on multiple data
samples within a reduced clock cycle count.

RISC-V [3, 4] is an open-source ISA that has grown
significantly since its inception due to its flexibility,
scalability, and customization capabilities. It has grad-
ually become a key component in global chip inno-
vation. The vector extension (RVV) [5] introduces a
set of vector registers and operations to the base ISA.

Additionally, it supports vector length agnostic SIMD
operations, where the hardware can be prompted to
reveal the vector size. As a result, the same code
runs on RISC-V processors with varying vector sizes
without requiring modifications or recompilation.

In this paper, the SCAMP algorithm is vectorized
using RISC-V Vector Extension (RVV) to exploit the
CPU’s SIMD operations and enhance the algorithm’s
performance. The experiments were conducted using
the gem5 simulator [6], running multiple simulations
while varying the vector register size across three time
series of different lengths. The results show speedup
improvements of up to 94× over the sequential algo-
rithm using vectors of 8K bits and floating-point data
of 64 bits.

SCAMP Vectorization

Among the many concepts of the RISC-V Vector Ex-
tension, three are key to this study: VLEN, the number
of bits in the vector registers; VLMAX, the maximum
number of elements that can be processed in a single
operation, determined by the Selected Element Width
(SEW) and VLEN; and VL, specifying the number of
elements to be updated with results from a vector in-
struction, which must be less than or equal to VLMAX.
SCAMP divides the time series into subsequences of
a fixed length, determined by a sliding window. The
algorithm searches for the most similar counterpart
of a subsequence by computing the normalized Eu-
clidean distance. This process constructs the Distance
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Matrix, where each cell stores the Euclidean distance
between two subsequences, and row and column in-
dices represent their positions within the time series.
The Distance Matrix is computed diagonally, since
this way each element of the diagonal can be incremen-
tally derived from the previous one, saving multiple
computations to obtain the Euclidean distance. Af-
ter computing all pairwise distances, the algorithm
identifies the subsequence with the minimum distance
for each subsequence. This is achieved by computing
the minimum value through columns and rows and
recording its index, resulting in the Matrix Profile and
Matrix Profile Index arrays.

To vectorize the SCAMP algorithm, the diagonals
of the Distance Matrix are packed together in vectors
of size VLEN, processing VL elements at a time. For
most of the computation, VL is set to VLMAX to
maximize hardware utilization. If the Matrix Profile
size is not a multiple of VLMAX, the last iterations
leave empty slots in the vector register. In other ar-
chitectures, such as x86 with AVX extensions, the
vector instructions always process VLMAX elements.
When there are not enough elements to fill the register,
padding must be used [7]. In contrast, RVV allows VL
to be dynamically adjusted (VL ≤ VLMAX). When
processing the last elements of the Matrix Profile, VL
is set precisely to match the remaining elements. This
approach simplifies programming, as there is no need
to manually pad the vector register and application ar-
rays. It also enhances code portability and scalability,
avoiding modifications or recompilation when running
on RISC-V processors with different VLEN values.

Experimental Evaluation

The experiments aim to achieve two main objectives.
First, to assess the performance improvement result-
ing from vectorization. For this purpose, SCAMP is
executed using RVV and compared against its baseline
sequential version. Second, the impact of VLEN on
execution time is analyzed by running tests with four
different VLEN sizes. The benchmarks include three
time series of varying lengths, all based on real data,
namely, penguin, audio and human, which contain
109842, 20334, and 7997 elements, respectively.

The experiments are conducted using the gem5 sim-
ulator [6] on a 16-core RISC-V processor running at 2
GHz. The system has 32 GiB of single-channel DDR4
RAM and a three-level cache with 32 KiB, 64 KiB,
and 16 MiB at the L1, L2, and L3 levels, respectively.

Figure 1 shows the execution time for each time
series in both the sequential and vectorized versions,
with different VLEN values. Even with a low VLEN
of 256, the average speedup across the three time
series is 3.15× compared to the sequential version.
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Figure 1: SCAMP execution time comparison (log scale):
Sequential vs. vectorized with varying VLEN.

With VLEN set to 8192, the average speedup reaches
93.81×, demonstrating the significant performance
gains achievable through vectorization in these algo-
rithms. Additionally, the execution time reduction
follows an almost linear trend as VLEN increases.
This is expected, as larger VLEN values proportion-
ally enhance data processing capacity per clock cycle.

Conclusion

This paper presents a vectorized implementation of the
SCAMP algorithm for time series analysis using the
RISC-V Vector Extension (RVV). The study examines
the benefits of RVV and evaluates its efficiency by
comparing execution times against the non-vectorized
version varying the vector size of the underlying hard-
ware. The results show speedup improvements of up to
93.81× compared to the sequential version, highlight-
ing the importance of vectorization in these algorithms.
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