

RISC-V on-chip debug & trace solution: Tessent™ UltraSight-V

Devan Sharma, Account Technology Manager, Tessent Embedded Analytics

Modern day SoCs are complex

- Complex SoC design
 - Multicore Processor architecture
 - Integration of complex IPs
- Complex Software
 - Difficult to predict real-time behaviour
 - CPU-CPU interactions
 - Software optimization
 - Huge amount of raw-trace data

Traditional SoC debug needs help

The time and costs taken to debug and optimize software executing on complex RISC-V based SoCs are escalating

- Software code complexity
- Designs have multicore and multichips packaging techniques
- Heisenbugs and long-tail problems are difficult to identify & reproduce
- Silent data corruption

Identifying hardware and real-time software issues require more efficient methods to debug, iterate, and scale

Low debug productivity

Run control debug using
GDB and OpenOCD
with code instrumentation for
logging capabilities

Highly-compressed processor trace (RISC-V E-trace spec)

Fast system memory access for ELF file uploads

Compatible with 3rd party tools including VS Code and Lauterbach TRACE32®

Scalable to a complete SoC system-level debug, optimization, and monitoring solution

HW verified by RISC-V core vendors, silicon proven down to 3nm and over 3GHz

Reduce costs, time taken to debug and optimize software executing on RISC-V SoCs

Embedded IPs

- Processor Analytic module
- Enhanced Trace encoder
- Static instrumentation
- Virtual console
- DMA
- Message Engine
- Communicator i.e. JTAG/USB/AXI

Embedded IPs

- Processor Analytic module
- Enhanced Trace encoder
- Static instrumentation
- Virtual console
- DMA
- Message Engine
- Communicator i.e. JTAG/USB/AXI

UVM Verification IPs

- Sequence libraries
- Example tests
- UVM integration environment with virtual interfaces for each communicator IP

Embedded IPs

- Processor Analytic module
- Enhanced Trace encoder
- Static instrumentation
- Virtual console
- DMA
- Message Engine
- Communicator i.e. JTAG/USB/AXI

UVM Verification IPs

- Sequence libraries
- Example tests
- UVM integration environment with virtual interfaces for each communicator IP

Tessent UltraSight-V – debug and trace hardware

Embedded IPs

- Processor Analytic Module
 - provides run control capabilities
- Enhanced Trace Encoder
 - Outputs processor trace (E-trace)

Tessent UltraSight-V — Instruction trace support

RISC-V Trace mandatory features

Instruction trace

Hart to encoder interface

'Delta Address' trace mode

Efficient packet format

Tessent Embedded Analytics

Cycle accurate trace

RISC-V Trace optional features

Multiple instruction retirement

Sequentially inferable jump mode

Implicit return mode

Branch Prediction mode

Jump Target Cache mode

Full Address mode

Sign-based compression

Filtering

Tessent UltraSight-V – efficient debugging

Embedded IPs

- DMA
 - Fast read/write to memory system
- Static Instrumentation
 - Minimally invasive logging
- Virtual console
 - Replaces UART interfaces
- Messaging infrastructure
 - Scalable solution
- Communicators
 - Supports USB/JTAG/AXI (for PCIE)

Tessent UltraSight-V – software environment

Flexible platform for host-driven applications leveraging Tessent UltraSight-V and Embedded Analytics monitors

Effective RISC-V debug and trace

- Runtime control and trace using GDB and OpenOCD
- Integration with common IDEs (e.g. VS Code, Eclipse) or CLI
- Supports USB, JTAG, and AXI for PCIE
- Supports RISC-V extensions and custom instructions

Tessent UltraSight-V – RISC-V run control and trace

IDE Support

Compatible with Visual Studio Code

Run-control for multi-core

 Comprehensive support of RISC-V is enabled through GDB and OpenOCD

E-trace

 Instruction trace reconstruction to ASM and C/C++ via GDB

Tessent UltraSight-V – Efficient debugging

Fast code upload

- Uses DMA
- Can be 70-100x faster than normal GDB load

Minimal overhead logging

- printf style debugging with timestamps
- Can take equivalent of -5 instructions
 (compared to printf at -100 instructions)

Virtual Console

 Interact with embedded software using UART-like capabilities (e.g. telnet)

Instrument code with printf-style logging macros

```
static void setup( void )
{
   USR_FUNCTION_ENTRY( setup );
   USR_LOGGING_INFO_STRING( "start me up" );

smb_write_count_gap = 0;
   UST_LOGGING_DEBUG_PARAM3( "Pixel write y=%d, x=%d, colour=%u", y, x, colour );
```


Tessent UltraSight-V - UVM Verification IP

Ensures effective and comprehensive verification

- Verifies that UltraSight-V modules are correctly connected to each other and the SoC components
- UVM integration environment with virtual interfaces for each communicator IP
- Sequence libraries
- Example tests

Scalability of Tessent UltraSight-V for complete SoC visibility

Tessent Ultrasight-V

Scalable solution for SoCs visibility

Thank you!

