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Generative AI Workloads

Conversational LLMs

● Generative AI workloads are dominated by 
transformer-based auto-regressive large language 
models (LLMs)

● text/image/code generation, chatbots, content 
writing, video generation and other common  
uses-cases heavily employ LLMs

● Matrix-matrix and matrix-vector multiplications 
dominate these workloads

Source: Chatgpt
3



IREE Compilation with Custom  Kernels
● Open-source direct code generation 

MLIR-based compiler and runtime
● Host/device programming model with 

multiple target architectures through a 
hardware abstraction layer (HAL) → stack 
is mostly architecture agnostic → step 
towards heterogeneous compilation

● Host does scheduling, vm-bytecode for 
runtime → portability

● Device-side codegen; Upstream IREE has 
RVV codegen through LLVM

● Microkernels
○ Intended to prevent the dichotomy 

between compiler and kernels
○ perform arithmetic but no memory 

allocation
○ standalone development and unit testing 

in C leads to quicker development
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Matrix Multiplication ukernel (mmt4d) Compilation in IREE
● For x86_64 and ARM64 architectures, IREE leverages linalg dialectʼs mmt4d op for matrix 

multiplication

● mmt4d op is meticulously optimized to exploit hardware-specific vector 
instructions and cache hierarchies

MaterializeHost
EncodingPass

CPULowerTo
UKernelsPass

LowerUKernelOps
ToCallsPass+

Only relevant parts of MLIR  and pass 
pipeline are shown

matmul → pack + 
mmt4d +  unpack

mmt4d → iree_uk_mmt4d 
ukernel call 

ConvertTo
LLVMPass

matmul.mlir

Precompiled 
ukernel bitcode

ukernel_bitcode_*.bc

Static linking 
LLVM
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Why mmt4d is better?

Tiled Matmul with Tile Size 
= {M,N,K} = {2,2,1}

● MLIR bufferizes all tensors in Row Major order as shown below.

● In case of plain MLIR linalg.matmul op, memory accesses are non-contiguous, which leads to a low cache 
hit rate when processing large matrices. This results in reduced performance due to inefficient utilization 
of the memory hierarchy.

Cache-miss for 
every access

Cache-miss when 
accessing next tile

Cache-miss when 
accessing next tileCache-hit

Cache-hit
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Why mmt4d is better?
● To reduce number of accesses to non-contiguous memory location, we need to 

reorder data. IREE uses MLIR tensor.pack ops for this.
Cache-miss for 
every access

Cache-miss when 
accessing next tile

Cache-miss when 
accessing next tileCache-hit Cache-hit

Cache-hits Cache-hits Cache-hits

tensor.pack tensor.pack tensor.pack

● After packing, elements within each tile are stored contiguously in memory, and 
the tiles themselves are laid out contiguously with respect to one another

● MLIR linalg.mmt4d op operates on these packed matrices. This results in 
efficient cache utilization, and performance acceleration
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RISC-V mmt4d Kernel - Implementation
● RISC-V ukernels were implemented for F16xF16 —>F32 case
● Separate ukernels for prefill and decode phases

VLEN 128 256 512 1024

Tile Size 
(Prefill)

{6, 16, 1} {6, 32, 1} {6, 64, 1} {6, 128, 1}

Tile Size 
(Decode)

{1, 32, 1} {1, 64, 1} {1, 128, 1} {1, 256, 1}

● F16 inputs were widened to F32 using vfcwt instructions
● vfmacc.v.f (ELEN=32) instructions were used to perform multiply-accumulation
● uKernel testing via fuzzing with random matrices of varying dimensions; results 

validated against upstream IREEʼs default matmul path

VLEN Aware Tiling
Tile Size: 

● Prefill→ 
{M,N,K}={6,VLEN/8,1}

● Decode → 
{M,N,K}={1,VLEN/4,1}

● These sizes result in 
optimal register 
utilization and 
minimizes register 
spills/reloads 
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RISC-V mmt4d Kernel - Benchmarking

Mmt4d kernel 
performs 
consistently better 
over a range of matrix 
sizes

Benchmarking was performed on MILK-V Jupiter board 
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22 
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RISC-V mmt4d Kernel - Benchmarking
● At kernel level, mmt4d for 

decode seems to cause 
performance degradation

● Smaller matrices → less impact 
of cache misses → pack op cost 
dominates in mmt4d

● Overhead of boilerplate code 
more dominant

Here, >60% of execution time is 
consumed by pack op, in real 
models pack cost can be evaded 
leading to performance boost!

Benchmarking was performed on MILK-V Jupiter board 
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22 
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RISC-V mmt4d Kernel - Benchmarking

For M>6, register pressure is 
high and register 
spills/reload results in 
performance degradation  

Benchmarking was performed on MILK-V Jupiter board 
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22 
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Llama-3.2-1B-Instruct-f16 Benchmarking

Benchmarking was performed on MILK-V Jupiter board 
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22 

86.5% computation time is 
consumed by pack ops operating 
on weight tensors. 
These ops are executed only once, 
during prefill and arenʼt executed 
in decode at all, leading to higher 
perf gains in decode 

These pack ops can be 
evaluated at compile-time 
by enabling const-eval 
optimization in IREE !!!

threads llama.cpp IREE IREE-10x

Prefill 
(toks/s)

1 0.04 0.14 0.18  

8 0.11 0.91 1.89    ~2x

Decode 
(toks/s)

1 0.03 0.02 0.99    ~50x

8 0.07 0.12 2.12    ~17x

Llama.cpp commit hash:76b27d2, Nov28

Test LLaMa
-1B

IREE 
-10x

Arc_c 59.4% 59.4%

GPQA 27.2% 27.2%

Correctness: Zero shot accuracy 
verified for general Q/A tests 

through LM Eval Harness

12



Llama-3.2-1B-Instruct-f16 Benchmarking - Prefill

Benchmarking was performed on MILK-V Jupiter 
board with 1.6GHz x 8 cores RVV cores, VLEN=256, 
RVA22 13



Llama-3.2-1B-Instruct-f16 Benchmarking - Decode

Benchmarking was performed on MILK-V Jupiter board with 
1.6GHz x 8 cores RVV cores, VLEN=256, RVA22 
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Summary

● Custom matrix multiplication microkernels were implemented in IREE producing 
~2x and ~50x single-thread runtime improvements during the LLM pre-fill and 
decode phases; results are validated on a multi-core MILK-V Jupiter board

● One-time data prepacking cost is incurred on the first token generation i.e., during 
the prefill; consteval at compile-time can remove this one-time packing cost 

● ukernels to be pushed to upstream IREE
● Need to improve the baselines for HPC on RISC-V 

○ More open-source contributions/collaborations to improve RISC-V based ML kernels on major 
platforms like llama.cpp, IREE, etc serves the whole RISC-V community
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