1o

ENGINEERS

Accelerating GenAl Workloads by Enabling RISC-V
Microkernel Supportin IREE

Adeel Ahmad, Ahmad Tameem, Nouman Amir, Bilal Zafar, Saad Bin Nasir
10xEngineers

: RISC-V
4 SUMMIT

1o

0 Utli ne ENGINEERS

Generative Al workloads

IREE compilation with custom microkernels (ukernels)

Custom RISC-V matrix multiplication ukernels - implementation
Kernel- and model-level results

Summary

Generative Al Workloads

e Generative Al workloads are dominated by
transformer-based auto-regressive large language

models (LLMs)

e text/image/code generation, chatbots, content
writing, video generation and other common

uses-cases heavily employ LLMs

e Matrix-matrix and matrix-vector multiplications

dominate these workloads
Llama-3.2-1B-Instruct-f16

B Non-Matmul [l Matmul

100
o
E
=
S
2
k]
2 w0
£
o
(8]
S
S 25
=]
8
c
o
S 0
o
o

Prefill Decode

LLM Phase

1o

ENGINEERS

Pick only one must visit place in Paris?

Alright — just one? No hesitation:
The Eiffel Tower ; .

It's the heart of Paris, instantly recognizable, and whether you're standing under it, seeing it sparkle at

night, or looking out from the top — it's pure magic.

No visit to Paris feels complete without it.

how about another one

Alright, if you've already got the Eiffel Tower checked off, then the next must-visit is:

The Louvre Museum @.

It's not just about the Mona Lisa — it's the world's largest art museum, packed with history, culture, and
jaw-dropping architecture (even the glass pyramid!). You could spend hours or even days inside, but even a

quick visit is worth it.

Want a hidden gem for #3? &

Source: Chatgpt

IREE Compilation with Custom Kernels

e Open-source direct code generation
MLIR-based compiler and runtime

e Host/device programming model with
multiple target architectures through a
hardware abstraction layer (HAL) > stack
is mostly architecture agnostic > step
towards heterogeneous compilation

e Host does scheduling, vm-bytecode for
runtime > portability

e Device-side codegen; Upstream IREE has
RVV codegen through LLVM

e Microkernels
o Intended to prevent the dichotomy
between compiler and kernels
o perform arithmetic but no memory
allocation
o standalone development and unit testing
in C leads to quicker development

1o

ENGINEERS
IREE Importers Input MLIR IREE Compiler using MLIR
-PyTorch :
™ SR flow
—
= & - & Nl
[
- — 8|\ = o T/ ||
LiteRT / stream ‘: oGt 5
/ Device lacement and Asynchonous Schedtuing : E !
! i
3@ | Profiing i
| Feedback |
- 1 i
\ H) D bapealll |
lardware Abstraction Layer U |
P
Command Bufiers
Host Code Generation Device Code Generation
cPU [y (= LM || ARV || RISC-Y
EmitC | L] sPiRV | ROCDL
[|
IREE Modules l/
W\ U8 [staic | [shared
| Bytecode][Source Library | | Library
IREE Runtime \L ~25-150KB Bindings
e l——
.—I— 7777777 ‘—\.l | I [Python ’
YM CPU Vulkan S ———
| Rust
CUDA Metal E
/ TFLite
\ WebGPU
. [ﬁJ ----- . ’
Plugins

E‘E’E Target Hardware 4

1o

ENGINEERS

Matrix Multiplication ukernel (mmt4d) Compilation in IREE

e Forx86_64 and ARM64 architectures, IREE leverages linalg dialect’s mmt4d op for matrix

mUItIpllcatlon %3 = tensor.empty() : tensor<4a3x256x6x1xf16>
%pack = tensor.pack %lhs ... into %3 : tensor<256x256xfl1l6> -> tensor<43x256x6x1xfl16>
%4 = tensor.empty() : tensor<8x256x32x1xf16>
%0 = linalg.matmul ins(%lhs, %rhs : MaterializeHost %Pack_1 = tensor.pack %rhs ... into %4 : tensor<256x256xf16> -> tensor<8x256x32x1xf16>
tensor<256x256xf16>, tensor<256x256xf16>) EncodingPass o = i L) R
o) %pack_2 = tensor.pack %acc ... into %5 : tensor<256x256xf32> -> tensor<43x8x6x32xf32>
outs(Aacc ° tensor‘<256x256xf32>) F- %6 = linalg.mmt4d ins(%pack, %pack_1 : tensor<43x256x6x1xflé6>, tensor<8x256x32x1xf16>)
tensor<256x256xf32> outs(%pack_2 : tensor<43x8x6x32xf32>) -> tensor<43x8x6x32xf32>
matmul.mlir matmul > pack + %7 = tensor.empty() : tensor<256x256xf32>
mmt4d + UnpaCk %unpack = tensor.unpack %6 ... into %7 : tensor<43x8x6x32xf32> -> tensor<256x256xf32>
Precompiled
ukernel bitcode .
mmt4d > iree_uk_mmt4d CPULowerTo , LowerUKernelOps
ukernel_bitcode_*.bc ukernel call

UKernelsPass ToCallsPass

ﬁ ConvertTo

LLVMPass
1lvm.call @iree_uk_mmt4d(%¥base_buffer, %offset, <:| func.call @iree_uk_mmt4d(%base_buffer, %offset,
%stride %strides

e mmtad op is meticulously optimized to exploit hardware-specific vector o, relevant parts of MLIR and pass

instructions and cache hierarchies pipeline are shown 5
|

1o

ENGINEERS

Why mmt4d is better?

Tiled Matmul with Tile Size
={M,N,K} ={2,2,1}

314356 | 398 (440

.........................

426 1484|542 |600

LHS Result

e MLIR bufferizes all tensors in Row Major order as shown below.

Cache-miss for Cache-miss when Cache-hit Cache-miss when
every access Cache-hit accessing next tile accessing next tile
RHS 3|4 78] Result 110(120 224280
L - JU - J © i 3 L - JU - J
¥ #¥-
Row-1 Row-2 oWt Row-2 Row-1 Row-2

e Incase of plain MLIR linalg.matmul op, memory accesses are non-contiguous, which leads to a low cache
hit rate when processing large matrices. This results in reduced performance due to inefficient utilization
of the memory hierarchy. 6

1o/
Why mmt4d is better? ENGINEERS

e Toreduce number of accesses to non-contiguous memory location, we need to
reorder data. IREE uses MLIR tensor.pack ops for this.

Cache-miss for ~ Cache-miss when) Cache-miss when
every access Cache-hit accessing next tile Cache-hit accessing next tile
[3 I J
U | & J Bl Bl
Row-1 Row-2 M M Row-1 R
Row-1 Row-2 owg
@ tensor.pack @ tensor.pack @tensor.pack
Cache-hits Cache-hits Cache-hits
Packed Packed M
Se ackec 110|120 (224|280|

e After packing, elements within each tile are stored contiguously in memory, and
the tiles themselves are laid out contiguously with respect to one another

e MLIR linalg.mmt4d op operates on these packed matrices. This results in
efficient cache utilization, and performance acceleration

RISC-V mmt4d Kernel - Implementation

e RISC-V ukernels were implemented for F16xF16 —>F32 case
e Separate ukernels for prefill and decode phases

VLEN 128 256 512 1024

Tile Size {6, 16, 1} {6, 32, 1} {6, 64, 1} {6, 128, 1}
(Prefill)

Tile Size {1, 32, 1} {1, 64, 1} {1,128, 1} {1, 256, 1}
(Decode)

e F16 inputs were widened to F32 using vfcwt instructions

1o

ENGINEERS
ﬁ.EN Aware Tiling \
Tile Size:
e Prefill>

{M,N,K}={6,VLEN/8,1}
e Decode~
{M,N,K}={1,VLEN/4,1}
e Thesesizesresultin
optimal register
utilization and

minimizes register

\ spills/reloads

e vfmacc.v.f (ELEN=32) instructions were used to perform multiply-accumulation
e uKernel testing via fuzzing with random matrices of varying dimensions; results

validated against upstream IREE’s default matmul path

RISC-V mmt4d Kernel - Benchmarking

matmul vs mmt4d ukernel (prefill)

GFLOPs

B matmul [l mmt4d
11.8
12.0 ali B
10.0
9.5
8.0 8.4
6.0
4.0
2.0 07
0.0
& o P N O S &> e
DS N V % 9 o S N
© D o~ : N v »)
& < 5 3 o " o §
8 > ©° 9 S S S g
Vv < & b:*» Q;J’ »
< <& <& Q) 5 O g
o > & ¥
Q pl Na ?

1o

ENGINEERS

-

Mmt4d kernel
performs
consistently better
over a range of matrix
sizes

~

Benchmarking was performed on MILK-V Jupiter board

Matrix Dims {M,N,K}

with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

1o

ENGINEERS

/ e At kernel level, mmt4d for \

decode seems to cause
performance degradation

e Smaller matrices » less impact
of cache misses -» pack op cost
dominates in mmt4d

e Overhead of boilerplate code

K more dominant

Here, >60% of execution time is
consumed by pack op, in real
models pack cost can be evaded
leading to performance boost!

RISC-V mmt4d Kernel - Benchmarking

matmul vs mmt4d ukernel (decode)

B matmul [l mmt4d

1.5

1.0

0.5

GFLOPs

0.0

Matrix Dims {M,N,K}

Benchmarking was performed on MILK-V Jupiter board
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

10

. Tox
RISC-V mmt4d Kernel - Benchmarking ENGINEERS

mmt4d ukernel (prefill)
Matrix Size = {2048,2048,2048}, VLEN=256

For M>6, register pressure is
12 high and register
8.87 spills/reload results in

10 performance degradation

GFLOPs

{2,32,1) {4,32,1} {6,32,1} {8,32,1) {16,32,1)

Benchmarking was performed on MILK-V Jupiter board
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

Tile Size {M,N,K} 1"

Llama-3.2-1B-Instruct-f16 Benchmarking

Test LLaMa IREE Correctness: Zero shot accuracy

-1B -10x verified for general Q/A tests
through LM Eval Harness

Arc_c 59.4% | 59.4%

1o

ENGINEERS

/86.5% computation time is \

consumed by pack ops operating
on weight tensors.

These ops are executed only once,
during prefill and aren’t executed
in decode at all, leading to higher
perf gains in decode

threads llama.cpp | IREE IREE-10x
GPQA 27.2% | 27.2%

Prefill 1 0.04 0.14 0.18
(toks/s)

8 0.11 0.91 189 ~2x
Decode 1 0.03 0.02 099 ~50x
(toks/s)

8 0.07 0.12 212 ~17x

Name Location

_initializer_162_dispatch_0_pack f16
_initializer_160_dispatch_0_pack_f16

_initializer_10_dispatch_0_pack_f16
_initializer_12_dispatch_0_pack_f16
_initializer_268_dispatch_0_pack_f16
_initializer_148_dispatch_0_pack _f16

_initializer_156_dispatch_0_pack_f16
initializer 0 dispatch 0 pack f16

Total time
5647 s
19365
19.28s
12285
95s
941s
497s
4.85s

- /

These pack ops can be
evaluated at compile-time
by enabling const-eval
optimization in IREE !!!

Llama.cpp commit hash:76b27d2, Nov28

Benchmarking was performed on MILK-V Jupiter board
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

12
I

1o

ENGINEERS

Llama-3.2-1B-Instruct-f16 Benchmarking - Prefill

Llama-3.2-1B-Instruct-f16-Prefill

B REE-Prefill [10x-IREE-Prefill

20 1.89 1.88 1.86 1.86 1.84 1.84 1.81
1.5
9 1.03
v, 0.98
c 1.0
Q
=
O
)
0.5
0.0
1 4 8 12 16 20 24 28 32
Benchmarking was performed on MILK-V Jupiter
Number of Threads board with 1.6GHz x 8 cores RVV cores, VLEN=256,
RVA22 13

1o

ENGINEERS

Llama-3.2-1B-Instruct-f16 Benchmarking - Decode

Llama-3.2-1B-Instruct-f16-Decode

M IREE-decode [10x-IREE-Decode
25

219 2.14 212
2.01 1.99 2.04 2.06 2.01

2.0

1.5
0.99

1.0

tokens/s

1 4 8 12 16 20 24 28 32
Benchmarking was performed on MILK-V Jupiter board with
Number of Threads 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

14
I

1o

ENGINEERS

Acknowledgements

1. SiFive - LLM Optimization and Deployment on SiFive RISC-V Intelligence Products,
URL:
https://www.sifive.com/blog/llm-optimization-and-deployment-on-sifive-intellig

2. IREE Blogs - Matrix Multiplication with MMT4D, URL:
https://iree.dev/community/blog/2021-10-13-matrix-multiplication-with-mmt4d/

3. IREE Blogs - Exploring CPU microkernels on a matmul example, URL:
https://iree.dev/community/blog/2024-01-22-exploring-cpu-microkernels-on-a-mat
mul-example/

15

https://www.sifive.com/blog/llm-optimization-and-deployment-on-sifive-intellig
https://iree.dev/community/blog/2021-10-13-matrix-multiplication-with-mmt4d/
https://iree.dev/community/blog/2024-01-22-exploring-cpu-microkernels-on-a-matmul-example/
https://iree.dev/community/blog/2024-01-22-exploring-cpu-microkernels-on-a-matmul-example/

1o

S u m m a ry ENGINEERS

e Custom matrix multiplication microkernels were implemented in IREE producing
~2x and ~50x single-thread runtime improvements during the LLM pre-fill and
decode phases; results are validated on a multi-core MILK-V Jupiter board

e One-time data prepacking cost is incurred on the first token generation i.e., during
the prefill; consteval at compile-time can remove this one-time packing cost

e ukernels to be pushed to upstream IREE

e Need to improve the baselines for HPC on RISC-V

o More open-source contributions/collaborations to improve RISC-V based ML kernels on major
platforms like llama.cpp, IREE, etc serves the whole RISC-V community

16

1o

ENGINEERS

Thank you
Let’s chat

Visit our posters!
Services offered at 10xEngineers

10xengineers.ai

17

https://10xengineers.ai/

