
Accelerating GenAI Workloads by Enabling RISC-V
Microkernel Support in IREE

Adeel Ahmad, Ahmad Tameem, Nouman Amir, Bilal Zafar, Saad Bin Nasir
10xEngineers

Outline

● Generative AI workloads
● IREE compilation with custom microkernels (ukernels)
● Custom RISC-V matrix multiplication ukernels - implementation
● Kernel- and model-level results
● Summary

2

Generative AI Workloads

Conversational LLMs

● Generative AI workloads are dominated by
transformer-based auto-regressive large language
models (LLMs)

● text/image/code generation, chatbots, content
writing, video generation and other common
uses-cases heavily employ LLMs

● Matrix-matrix and matrix-vector multiplications
dominate these workloads

Source: Chatgpt
3

IREE Compilation with Custom Kernels
● Open-source direct code generation

MLIR-based compiler and runtime
● Host/device programming model with

multiple target architectures through a
hardware abstraction layer (HAL) → stack
is mostly architecture agnostic → step
towards heterogeneous compilation

● Host does scheduling, vm-bytecode for
runtime → portability

● Device-side codegen; Upstream IREE has
RVV codegen through LLVM

● Microkernels
○ Intended to prevent the dichotomy

between compiler and kernels
○ perform arithmetic but no memory

allocation
○ standalone development and unit testing

in C leads to quicker development
4

Matrix Multiplication ukernel (mmt4d) Compilation in IREE
● For x86_64 and ARM64 architectures, IREE leverages linalg dialectʼs mmt4d op for matrix

multiplication

● mmt4d op is meticulously optimized to exploit hardware-specific vector
instructions and cache hierarchies

MaterializeHost
EncodingPass

CPULowerTo
UKernelsPass

LowerUKernelOps
ToCallsPass+

Only relevant parts of MLIR and pass
pipeline are shown

matmul → pack +
mmt4d + unpack

mmt4d → iree_uk_mmt4d
ukernel call

ConvertTo
LLVMPass

matmul.mlir

Precompiled
ukernel bitcode

ukernel_bitcode_*.bc

Static linking
LLVM

5

Why mmt4d is better?

Tiled Matmul with Tile Size
= {M,N,K} = {2,2,1}

● MLIR bufferizes all tensors in Row Major order as shown below.

● In case of plain MLIR linalg.matmul op, memory accesses are non-contiguous, which leads to a low cache
hit rate when processing large matrices. This results in reduced performance due to inefficient utilization
of the memory hierarchy.

Cache-miss for
every access

Cache-miss when
accessing next tile

Cache-miss when
accessing next tileCache-hit

Cache-hit

6

Why mmt4d is better?
● To reduce number of accesses to non-contiguous memory location, we need to

reorder data. IREE uses MLIR tensor.pack ops for this.
Cache-miss for
every access

Cache-miss when
accessing next tile

Cache-miss when
accessing next tileCache-hit Cache-hit

Cache-hits Cache-hits Cache-hits

tensor.pack tensor.pack tensor.pack

● After packing, elements within each tile are stored contiguously in memory, and
the tiles themselves are laid out contiguously with respect to one another

● MLIR linalg.mmt4d op operates on these packed matrices. This results in
efficient cache utilization, and performance acceleration

7

RISC-V mmt4d Kernel - Implementation
● RISC-V ukernels were implemented for F16xF16 —>F32 case
● Separate ukernels for prefill and decode phases

VLEN 128 256 512 1024

Tile Size
(Prefill)

{6, 16, 1} {6, 32, 1} {6, 64, 1} {6, 128, 1}

Tile Size
(Decode)

{1, 32, 1} {1, 64, 1} {1, 128, 1} {1, 256, 1}

● F16 inputs were widened to F32 using vfcwt instructions
● vfmacc.v.f (ELEN=32) instructions were used to perform multiply-accumulation
● uKernel testing via fuzzing with random matrices of varying dimensions; results

validated against upstream IREEʼs default matmul path

VLEN Aware Tiling
Tile Size:

● Prefill→
{M,N,K}={6,VLEN/8,1}

● Decode →
{M,N,K}={1,VLEN/4,1}

● These sizes result in
optimal register
utilization and
minimizes register
spills/reloads

8

RISC-V mmt4d Kernel - Benchmarking

Mmt4d kernel
performs
consistently better
over a range of matrix
sizes

Benchmarking was performed on MILK-V Jupiter board
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

9

RISC-V mmt4d Kernel - Benchmarking
● At kernel level, mmt4d for

decode seems to cause
performance degradation

● Smaller matrices → less impact
of cache misses → pack op cost
dominates in mmt4d

● Overhead of boilerplate code
more dominant

Here, >60% of execution time is
consumed by pack op, in real
models pack cost can be evaded
leading to performance boost!

Benchmarking was performed on MILK-V Jupiter board
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

10

RISC-V mmt4d Kernel - Benchmarking

For M>6, register pressure is
high and register
spills/reload results in
performance degradation

Benchmarking was performed on MILK-V Jupiter board
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

11

Llama-3.2-1B-Instruct-f16 Benchmarking

Benchmarking was performed on MILK-V Jupiter board
with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

86.5% computation time is
consumed by pack ops operating
on weight tensors.
These ops are executed only once,
during prefill and arenʼt executed
in decode at all, leading to higher
perf gains in decode

These pack ops can be
evaluated at compile-time
by enabling const-eval
optimization in IREE !!!

threads llama.cpp IREE IREE-10x

Prefill
(toks/s)

1 0.04 0.14 0.18

8 0.11 0.91 1.89 ~2x

Decode
(toks/s)

1 0.03 0.02 0.99 ~50x

8 0.07 0.12 2.12 ~17x

Llama.cpp commit hash:76b27d2, Nov28

Test LLaMa
-1B

IREE
-10x

Arc_c 59.4% 59.4%

GPQA 27.2% 27.2%

Correctness: Zero shot accuracy
verified for general Q/A tests

through LM Eval Harness

12

Llama-3.2-1B-Instruct-f16 Benchmarking - Prefill

Benchmarking was performed on MILK-V Jupiter
board with 1.6GHz x 8 cores RVV cores, VLEN=256,
RVA22 13

Llama-3.2-1B-Instruct-f16 Benchmarking - Decode

Benchmarking was performed on MILK-V Jupiter board with
1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

14

Acknowledgements

1. SiFive - LLM Optimization and Deployment on SiFive RISC-V Intelligence Products,
URL:
https://www.sifive.com/blog/llm-optimization-and-deployment-on-sifive-intellig

2. IREE Blogs - Matrix Multiplication with MMT4D, URL:
https://iree.dev/community/blog/2021-10-13-matrix-multiplication-with-mmt4d/

3. IREE Blogs - Exploring CPU microkernels on a matmul example, URL:
https://iree.dev/community/blog/2024-01-22-exploring-cpu-microkernels-on-a-mat
mul-example/

15

https://www.sifive.com/blog/llm-optimization-and-deployment-on-sifive-intellig
https://iree.dev/community/blog/2021-10-13-matrix-multiplication-with-mmt4d/
https://iree.dev/community/blog/2024-01-22-exploring-cpu-microkernels-on-a-matmul-example/
https://iree.dev/community/blog/2024-01-22-exploring-cpu-microkernels-on-a-matmul-example/

Summary

● Custom matrix multiplication microkernels were implemented in IREE producing
~2x and ~50x single-thread runtime improvements during the LLM pre-fill and
decode phases; results are validated on a multi-core MILK-V Jupiter board

● One-time data prepacking cost is incurred on the first token generation i.e., during
the prefill; consteval at compile-time can remove this one-time packing cost

● ukernels to be pushed to upstream IREE
● Need to improve the baselines for HPC on RISC-V

○ More open-source contributions/collaborations to improve RISC-V based ML kernels on major
platforms like llama.cpp, IREE, etc serves the whole RISC-V community

16

Thank you
Letʼs chat

Visit our posters!

RISC-V Design

and

Verifi
catio

n Vision and

Gen AIImage Signal
Processing

Services offered at 10xEngineers

Applic
atio

n

pipelin
es

Model

Compression

Custom
 HW

ML

com
pilation

Custom

Kernels

17

10xengineers.ai

https://10xengineers.ai/

