

Accelerating GenAI Workloads by Enabling RISC-V Microkernel Support in IREE

Adeel Ahmad, Ahmad Tameem, Nouman Amir, Bilal Zafar, **Saad Bin Nasir** 10xEngineers

Outline

- Generative AI workloads
- IREE compilation with custom microkernels (ukernels)
- Custom RISC-V matrix multiplication ukernels implementation
- Kernel- and model-level results
- Summary

Generative AI Workloads

- Generative AI workloads are dominated by transformer-based auto-regressive large language models (LLMs)
- text/image/code generation, chatbots, content writing, video generation and other common uses-cases heavily employ LLMs
- Matrix-matrix and matrix-vector multiplications dominate these workloads

Llama-3.2-1B-Instruct-f16

Matmul vs Non Matmul Time

Non-Matmul

Matmul

Matmul

Matmul

Prefill

Decode

LLM Phase

Source: Chatgpt

IREE Compilation with Custom Kernels

- Open-source direct code generation
 MLIR-based compiler and runtime
- Host/device programming model with multiple target architectures through a hardware abstraction layer (HAL) → stack is mostly architecture agnostic → step towards heterogeneous compilation
- Host does scheduling, vm-bytecode for runtime → portability
- Device-side codegen; Upstream IREE has RVV codegen through LLVM
- Microkernels
 - Intended to prevent the dichotomy between compiler and kernels
 - perform arithmetic but no memory allocation
 - standalone development and unit testing in C leads to quicker development

Matrix Multiplication ukernel (mmt4d) Compilation in IREE

• For **x86_64** and **ARM64** architectures, IREE leverages linalg dialect's **mmt4d** op for matrix

multiplication

```
%3 = tensor.emptv() : tensor<43x256x6x1xf16>
                                                                    %pack = tensor.pack %lhs ... into %3 : tensor<256x256xf16> -> tensor<43x256x6x1xf16>
                                                                    %4 = tensor.empty() : tensor<8x256x32x1xf16>
%0 = linalg.matmul ins(%lhs, %rhs :
                                                                    %pack_1 = tensor.pack %rhs ... into %4 : tensor<256x256xf16> -> tensor<8x256x32x1xf16>
                                                 MaterializeHost
tensor<256x256xf16>, tensor<256x256xf16>) EncodingPass
                                                                    %5 = tensor.empty() : tensor<43x8x6x32xf32>
                                                                    %pack_2 = tensor.pack %acc ... into %5 : tensor<256x256xf32> -> tensor<43x8x6x32xf32>
outs(%acc : tensor<256x256xf32>) ->
                                                                    %6 = linalg.mmt4d ins(%pack, %pack_1 : tensor<43x256x6x1xf16>, tensor<8x256x32x1xf16>)
tensor<256x256xf32>
                                                                    outs(%pack_2 : tensor<43x8x6x32xf32>) -> tensor<43x8x6x32xf32>
               matmul.mlir
                                                                    %7 = tensor.empty() : tensor<256x256xf32>
                                                 mmt4d + unpack
                                                                    %unpack = tensor.unpack %6 ... into %7 : tensor<43x8x6x32xf32> -> tensor<256x256xf32>
   Precompiled
  ukernel bitcode
                                                                                   mmt4d → iree uk mmt4d
                                                                                          ukernel call
ukernel_bitcode_*.bc
                                                                                                                  UKernelsPass
                                                                                                                                  ToCallsPass
                                   LLVM
                                                                ConvertTo
                                                                LLVMPass
                                                                                func.call @iree_uk_mmt4d(%base_buffer, %offset,
    llvm.call @iree_uk_mmt4d(%base_buffer, %offset,
                                                                                %strides ...
    %stride ....
```

 mmt4d op is meticulously optimized to exploit hardware-specific vector instructions and cache hierarchies

Only relevant parts of MLIR and pass pipeline are shown

Why mmt4d is better?

Tiled Matmul with Tile Size = {M,N,K} = {2,2,1}

MLIR bufferizes all tensors in Row Major order as shown below.

• In case of plain MLIR linalg.matmul op, memory accesses are non-contiguous, which leads to a low cache hit rate when processing large matrices. This results in reduced performance due to inefficient utilization of the memory hierarchy.

Why mmt4d is better?

 To reduce number of accesses to non-contiguous memory location, we need to reorder data. IREE uses MLIR tensor.pack ops for this.

- After packing, elements within each tile are stored contiguously in memory, and the tiles themselves are laid out contiguously with respect to one another
- MLIR linalg.mmt4d op operates on these packed matrices. This results in efficient cache utilization, and performance acceleration

- RISC-V ukernels were implemented for **F16xF16** —> **F32 case**
- Separate ukernels for prefill and decode phases

VLEN	128	256	512	1024
Tile Size (Prefill)	{6, 16, 1}	{6, 32, 1}	{6, 64, 1}	{6, 128, 1}
Tile Size (Decode)	{1, 32, 1}	{1, 64, 1}	{1, 128, 1}	{1, 256, 1}

VLEN Aware Tiling Tile Size:

- Prefill→ {M,N,K}={6,VLEN/8,1}
- Decode → {M,N,K}={1,VLEN/4,1}
- These sizes result in optimal register utilization and minimizes register spills/reloads

- **F16** inputs were widened to **F32** using **vfcwt** instructions
- vfmacc.v.f (ELEN=32) instructions were used to perform multiply-accumulation
- uKernel testing via **fuzzing with random matrices** of **varying dimensions**; results validated against upstream IREE's **default matmul** path

RISC-V mmt4d Kernel - Benchmarking

matmul vs mmt4d ukernel (prefill)

Mmt4d kernel
performs
consistently better
over a range of matrix
sizes

Matrix Dims {M,N,K}

RISC-V mmt4d Kernel - Benchmarking

matmul vs mmt4d ukernel (decode)

Matrix Dims {M,N,K}

- At kernel level, mmt4d for decode seems to cause performance degradation
- Smaller matrices → less impact of cache misses → pack op cost dominates in mmt4d
- Overhead of boilerplate code more dominant

Here, >60% of execution time is consumed by pack op, in real models pack cost can be evaded leading to performance boost!

RISC-V mmt4d Kernel - Benchmarking

mmt4d ukernel (prefill)

Tile Size {M,N,K}

Test	LLaMa -1B	IREE -10x
Arc_c	59.4%	59.4%
GPQA	27.2%	27.2%

Correctness: Zero shot accuracy verified for general Q/A tests through LM Eval Harness

	threads	llama.cpp	IREE	IREE-10x
Prefill (toks/s)	1	0.04	0.14	0.18
(10113/3)	8	0.11	0.91	1.89 ~2x
Decode (toks/s)	1	0.03	0.02	0.99 ~50x
	8	0.07	0.12	2.12 ~17x

86.5% computation time is consumed by pack ops operating on **weight tensors**.

These ops are executed **only once, during prefill** and **aren't executed in decode** at all, leading to higher perf gains in decode

These pack ops can be evaluated at **compile-time** by enabling **const-eval** optimization in IREE!!!

Llama.cpp commit hash:76b27d2, Nov28 Benchmarking was performed on MILK-V Jupiter board with 1.6GHz x 8 cores RVV cores, VLEN=256, RVA22

Llama-3.2-1B-Instruct-f16 Benchmarking - Prefill

Llama-3.2-1B-Instruct-f16-Prefill

Number of Threads

Llama-3.2-1B-Instruct-f16 Benchmarking - Decode

Llama-3.2-1B-Instruct-f16-Decode

Number of Threads

Acknowledgements

- SiFive LLM Optimization and Deployment on SiFive RISC-V Intelligence Products, URL:
 - https://www.sifive.com/blog/llm-optimization-and-deployment-on-sifive-intellig
- 2. IREE Blogs Matrix Multiplication with MMT4D, URL: https://iree.dev/community/blog/2021-10-13-matrix-multiplication-with-mmt4d/
- 3. IREE Blogs Exploring CPU microkernels on a matmul example, URL: https://iree.dev/community/blog/2024-01-22-exploring-cpu-microkernels-on-a-matmul-example/

Summary

- Custom matrix multiplication microkernels were implemented in IREE producing
 ~2x and ~50x single-thread runtime improvements during the LLM pre-fill and
 decode phases; results are validated on a multi-core MILK-V Jupiter board
- One-time data prepacking cost is incurred on the first token generation i.e., during the prefill; consteval at compile-time can remove this one-time packing cost
- ukernels to be pushed to upstream IREE
- Need to improve the baselines for HPC on RISC-V
 - More open-source contributions/collaborations to improve RISC-V based ML kernels on major platforms like llama.cpp, IREE, etc serves the whole RISC-V community

Thank you

Let's chat

Visit our posters!

Services offered at 10xEngineers

