
RISC-V Summit Europe 1

Customized RISC-V In a Simple Game Console
Zdenek Prikryl, Pavel Snobl

Codasip

Abstract

RISC-V processors have found their way into products already. The openness of the RISC-V ISA, the strong

ecosystem, and, more importantly, the ability to innovate through custom extensions have made this possible.

Custom extensions can target any domain including game consoles. This paper will focus on the NES emulator

and how it can be accelerated on RISC-V processors. Firstly, we will create a virtual platform with the

standard RISC-V processor in a RV32IMCBZc configuration. Then, we will explore different instruction set

extensions that help with performance. The virtual platform and the design space exploration will be done

using Codasip Studio, EDA tools focused on (not only) RISC-V customization. The process contains software

profiling, looking at the instruction set sequences, creating new instructions in the processor description

language that allows regeneration of the programming and simulation tools, and implementing the processor

in RTL. Once the performance of the virtual platform is at an acceptable level, we will perform PPA analysis

to understand the impact of the added instructions in processor implementation.

Introduction

The idea of domain-specific processors or accelerators is

not new, it has been here for a while. The process of

development of such a processor can be a bit problematic if

no or limited automation is used. In other words, if

designers need to develop a new domain specific processor,

they need a virtual platform, programming toolchain, RTL,

and other tools to validate the ideas and impact of the

accelerator. These items can be developed separately, but it

is a time-consuming task that requires experienced teams.

On top of that, they need to be carefully synchronized, and

some testing or verification approach must be in place to

check that all teams are doing the same thing, and that they

interpret the specification correctly. It is obvious that the

design space exploration is not as fast as it should be since

all changes are made manually. Therefore, tools that

automate the process of design space exploration are

desperately needed. Codasip Studio [1] is designed to help

with the design space exploration, automatic programming

toolchain generation, virtual platform creation, and

processor implementation, verification, or other tasks

needed for the development of domain-specific processors.

It uses architecture description language [2] called CodAL

that describes the processor including its instruction set and

microarchitecture at high-level abstraction level.

In this paper, we explore how adding custom instructions

to a RISC-V processor [3] can improve the performance of

an NES emulator application. Firstly, the off-the-shelf

RISC-V processor and standard programming toolchain are

used to see the starting point for the NES emulator. Then, a

virtual platform and profiler is used to find hotspots, and

new instructions are identified. These instructions are

added to the vanilla RISC-V processor using Codasip

Studio. Lastly, the whole platform, including the

customized processor, is put into FPGA.

NES and its Emulator

NES or Nintendo Entertainment System is an 8-bit video

game console originally released by Nintendo in 1983 in

Japan and in 1985 in the United States. It is built around the

Ricoh 2A03/2A07 (NTSC/PAL versions) microprocessor,

running at 1.79 MHz and 1.66 MHz respectively. The CPU

is a variant of the MOS Technology 6502 with the BCD

(Binary Coded Decimal) mode disabled, working with 2

KB of RAM. The graphics of the console are handled by a

specialized PPU (Picture Processing Unit) chip with 2 KB

of video RAM and a screen resolution of 256x240 pixels

with up to 25 colors displayed at the same time. The sound

is produced by another specialized chip, the APU (Audio

Processing Unit), capable of outputting sound using a

triangle wave channel, a white noise channel, a DPCM

channel, and two pulse wave channels.

The MOS Technology 6502 [5] was designed as an 8-bit

processor with a 16-bit memory address range and six

registers available to the programmer. There are five 8-bit

data and index registers. There is also a 16-bit program

counter, and a 16-bit cycle count register (CLK), not visible

to the programmer. It has 56 instructions and 13 addressing

modes, determining where the operands of the instructions

are located.

The memory space is divided into so-called pages, each

256 bytes long. The first two pages are special, serving as

the so called zero mode, accessible via shorter instructions,

and the stack, used for things like subroutine calls and

accessible only using special push/pop and call/return

instructions.

As the NES emulator, Infones [4] is used. It is one of the

many available emulators out there. It runs on the standard

x86 platform, and it is extendable to other platforms. The

emulator is written in C++ and licensed under the Apache

2 RISC-V Summit Europe

Licence 2.0, enabling the modifications described in this

paper.

NES Accelerator

For this project, we chose the Codasip RISC-V processor

L110, a member of the 100 family. It is a highly

configurable and customizable embedded processor at the

instruction set level and on memory subsystem. The

configuration selected to start with is RV32IMCBZc with

TCMs in which the code and data will be stored. In other

words, the software is completely stored in TCMs to have

as fast access to data and code as possible.

The processor is not enough to get everything working.

We need to create a platform that besides the processor

contains also peripherals and other important blocks, such

as display or input controller. Such a platform was created

in Codasip Studio, so it generates not only RTL, but also a

virtual prototype that can be used to identify new

instructions.

So, the first step is to profile the overall performance on

the virtual platform and find hot stops. Codasip profiler was

used to get the data. A homegrown game, Nova the squirrel

[6], that is licensed under GNU General Public License, is

used to measure the data. The outcome showed that there

are three functions that take most of the execution time per

frame. The functions are InfoNES_LoadFrame that takes

27% of the execution time, InfoNES_DrawLine that takes

about 7%, and then the K6502_Step that takes 52% of the

execution time. The InfoNES_LoadFrame is responsible for

writing the data to the graphical RAM on TFT display, so

there is nothing much to optimize, since is it given by the

hardware that is used. The InfoNES_DrawLine is

responsible for line rendering and accessing different tables

with sprites, background, etc. It tightly cooperates with

PPU and APU emulators. Since the time spent is not

significant, this function is not optimized. The K6502_Step

is responsible for execution of individual instructions of the

game and takes a significant amount of time. Therefore, it

is the best candidate for optimization.

K6520_Step is a simple switch that depends on the

opcode of an instruction and emulates the instruction.

During this it accesses the processor registers modelled as

global variables and manipulates data stored in RAM, PPU,

and APU. The RISC-V extension that was developed

implements all the instructions present in the switch. Some

additional instructions were added as well that decouple the

CPU, PPU and APU, since PPU and APU are still emulated

in software.

Results

The graph in Fig. 1. shows the result in terms of

performance improvements per frame, energy consumption

per frame, and area addition. The comparison is done

relative to the L110 without customization. L110X marks

the enhanced L110. As we can see, the performance gain

per frame is 28%, while the energy consumption per frame

dropped by 13% even though the design is 18% bigger. The

reason why the energy consumption is lower is the fact that

we need less cycles to do the computation and clock gating

that Codasip Studio inserts. Most of the area increase is in

the register files that are used for stack and zero mode

pages data storage.

Fig. 1. Results

Summary

This paper shows the results of the RISC-V extensions

for a game console emulator. It uses Codasip RISC-V

processor as the base for the extension. Then several

custom instructions are added that first emulate some parts

of the MOS Technology 6502 processor, and second, they

help with the overall execution of the emulator. The RISC-

V extensions were designed in the CodAL language,

serving as an input to Codasip Studio. Codasip Studio

generates all needed outputs including but not limited to an

LLVM based C/C++ compiler that is fully aware of the

new instructions, profiler and debugger, and RTL that can

be used for synthesis or FPGA. The customized RISC-V

processor is then put first into a virtual platform. Then, the

whole platform is moved to FPGA. The extensions bring a

28% performance boost for each frame, and energy

consumption is reduced by 13% per frame even though the

area is increased by 18%. One of the most important

metrics is the time needed for the extension, which was five

days only to get from the idea to a working prototype on

FPGA.

References

[1] Codasip website: https://www.codasip.com

[2] Prabhat Mishra, Nikil Dutt, “Processor

Description Languages”, 2011, ISBN: 9780080558370

[3] RISC-V website: https://riscv.org/

[4] NES emulator website: https://github.com/jay-

kumogata/InfoNES

[5] 6502 Reference:

https://www.nesdev.org/obelisk-6502-

guide/reference.html

[6] Nova the squirrel game webpage:

https://github.com/NovaSquirrel/NovaTheSquirrel

0.8

0.9

1

1.1

1.2

1.3

Performance Energy
Consumption

Area

L110 L110X

