
Implementing Runtime-Configurable Endianness in
RISC-V: Challenges and Solutions

Ben Dooks1, Lawrence Hunter1, and Roan Richmond1

1Codethink Ltd, Manchester, United Kingdom
{first}.{last}@codethink.co.uk

Abstract

The RISC-V Privileged Specification introduced dynamic endianness switching in version 1.12, though no
commercial hardware yet supports it. This work extends QEMU to enable big-endian execution, allowing the
booting of a big-endian Linux system with OpenSBI. Modifications were required across QEMU, OpenSBI, the
Linux kernel, and supporting libraries to ensure correct memory operations, instruction encoding, and runtime
patching. The project demonstrates the feasibility of big-endian support for RISC-V, providing a foundation for
future hardware and software development.

Introduction

The RISC-V Privileged Specification includes endian-
ness control, allowing runtime switching between big
and little endian memory read and writes [1]. While in-
troduced in privileged specification version 1.12 (Late
2021), no commercially available hardware implements
it, unlike ARM [2, 3]. The benefit of endian control is
primarily for specialised applications such as digital
signal processing where big endian allows for optimised
byte operations but little endian provides much wider
software compatibility, and therefore being able to
switch is a useful feature [4].

The popular system emulation tool QEMU does
not implement this aspect of the specification. The
benefit of QEMU and similar tools are that they allow
for rapid software development even before Field Pro-
grammable Gate Arrays (FPGAs) are available. The
work performed involved adding endianness control
support to QEMU using a little endian target, which
is then switched to big endian at runtime, in order to
boot a big endian Linux with a big endian OpenSBI.
Aside from QEMU the entire software stack must be
modified to allow big endian booting and therefore it
was required to modify OpenSBI, the Linux Kernel,
libraries such as uclibc, and kvmtool. The status of
upstreaming efforts is also reported.

QEMU

The QEMU implementation required the addition
of the {M,VS,S,U}BE {m,h,s,u}status register flags
and handling of the endianness switch (including
the required sfence.vma), as well as modifications to
load and store operations. Additionally, the atomic
load/store operations added in the Zacaz extension
required similar modifications.

Endianness control was achieved by modifying the
CPU state to include a BE_DATA Translation Block
(TB) flag. The specification permits modifications to
this flag only via a write to the mstatus register. The
{h,s,u}status’s {VS,U,S}BE serve as read-only clones
of the MBE. The TB required further modifications
to ensure the correct pointer endianness.

Page-table code was modified to follow the same
endianness as the S or HS modes in the specification.
Any code creating or using page table entries will now
see the entries in the correct endian format.

OpenSBI

OpenSBI modifications were necessary to switch the
endianness at boot and handle its effects. Compiler
flags and Memory Mapped Input Output (MMIO)
load and store operations were modified to correctly
handle endianness. While the boot log did not require
changes, it was updated to explicitly indicate that
OpenSBI was a big endian build. Additionally, some
initialisation code was modified since QEMU hands
control over with data written in little endian.

Linux kernel

Similar to OpenSBI, the Linux kernel required mod-
ifications to compiler flags and endianness handling
in load and store operations. The build configuration
system was updated to allow the selection of big en-
dian, disabling unsupported options such as the vector
instructions, which gcc does not currently support com-
piling as big endian. It was decided that addressing
such a limitation was not in scope.

Any code that performed multi-item memory op-
erations, such as memcpy, strlen, and uaccess, were
adjusted to accommodate endianness changes. This

RISC-V Summit Europe, Paris, 12-15th May 2025 1



was achieved either by disabling the optimised variants
for later fixing or modifying header files to use the
appropriate endian version.

Significant modifications were necessary for code ac-
cessing or generating instructions, as these are always
represented in little endian format. Adjustments were
made to the trap handler, vector handling, kprobes,
static branch modifier code, and the Berkeley Packet
Filter (BPF) to allow Just-In-Time (JIT) insertions
to function correctly. The Linux kernel uses runtime
instruction modification for features such as runtime
variant patching and efficient runtime code selection.
Without proper endianness handling, these mecha-
nisms would fail, leading to kernel crashes.

Another area that required modification was the
creation of custom instructions. In some cases, in-
structions such as a pause are generated directly by
using the integer value of the instruction, as older
toolchains - still supported by the build system - do
not include these instructions natively. Identifying
these instructions were challenging as sometimes an
endian swapped integer could appear to be another
valid instruction which performed a different action.
This could bypass the illegal instruction trap lead-
ing to unpredictable failures later in execution. One
such failure scenario involved unintended modifica-
tions to the frame pointer, which is a vital component
in function call management and stack unwinding. If
incorrectly altered, the frame pointer could lead to
incorrect stack traces, misaligned memory access, and
difficult to diagnose crashes.

Headers and libraries

The Linux kernel exports headers for endian conver-
sion, such as network byte ordering macros like htons
and htonl, which required updates to ensure correct
endianness handling. Additional conversion macros,
such as cpu_to_{le,be}{16,32,64} and their reverses,
were also adjusted.

Some libraries, including uclibc, assumed a little
endian system. Modifications were necessary to allow
builds and ensure the correct header selection.

kvmtool

PCI read and write operations required modifications
to handle endianness for the hypervisor, including the
introduction of a new function to configure endianness.
While kvmtool includes endian conversion for most
little endian IO operations, issues persist in areas such
as virtio. These issues can be bypassed using device
trees instead of PCI for exporting devices into the VM,
though future fixes are necessary..

Achievements

A big endian Linux system has been booted to userland
under a runtime configurable RISC-V target switched
to big endian. The kernel supports BPF, ftrace, and
kprobes, and KVM can run in either big or little endian
mode. Tooling such as GCC and binutils have been
verified, although some bugs remain in GCC and glibc
within buildroot.

Upstream

Feedback has been requested from the Linux, QEMU,
and OpenSBI mailing lists. No response has been
received from QEMU or OpenSBI. Kernel maintainers
have expressed concerns regarding the maintenance
burden but are open to inclusion if hardware support
becomes available. The current work is available at
https://gitlab.com/CodethinkLabs/riscv_bigendian..

Future

The project has demonstrated feasibility and provides
a foundation for future development. When hardware
capable of configurable endianness becomes available,
further testing and issue resolution will be required.
Limited resources were available to carry out extensive
testing, therefore more bugs are expected to be found
once real workloads are run on big endian systems.

References

[1] GitHub - riscv/riscv-isa-manual: RISC-V Instruction Set
Manual — github.com. https : / / github . com / riscv /
riscv-isa-manual/. [Accessed 04-02-2025].

[2] Five Embeddev. The RISC-V Instruction Set Manual,
Volume II: Privileged Architecture — five-embeddev.com.
https://five-embeddev.com/riscv-priv-isa-manual/
Priv- v1.12/riscv- privileged.html. [Accessed 04-02-
2025].

[3] Arm Developer: developer.arm.com. https://developer.
arm.com/documentation/ddi0406/b/Application-Level-
Architecture / Application - Level - Memory - Model /
Endian-support/Control-of-the-endianness-mapping-
scheme-in-ARMv7?lang=en. [Accessed 05-02-2025].

[4] What is Mixed-endian? - Definition from Amazing
Algorithms — amazingalgorithms.com. https : / /
amazingalgorithms . com / definitions / mixed - endian/.
[Accessed 05-02-2025].

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://gitlab.com/CodethinkLabs/riscv_bigendian
https://github.com/riscv/riscv-isa-manual/
https://github.com/riscv/riscv-isa-manual/
https://five-embeddev.com/riscv-priv-isa-manual/Priv-v1.12/riscv-privileged.html
https://five-embeddev.com/riscv-priv-isa-manual/Priv-v1.12/riscv-privileged.html
https://developer.arm.com/documentation/ddi0406/b/Application-Level-Architecture/Application-Level-Memory-Model/Endian-support/Control-of-the-endianness-mapping-scheme-in-ARMv7?lang=en
https://developer.arm.com/documentation/ddi0406/b/Application-Level-Architecture/Application-Level-Memory-Model/Endian-support/Control-of-the-endianness-mapping-scheme-in-ARMv7?lang=en
https://developer.arm.com/documentation/ddi0406/b/Application-Level-Architecture/Application-Level-Memory-Model/Endian-support/Control-of-the-endianness-mapping-scheme-in-ARMv7?lang=en
https://developer.arm.com/documentation/ddi0406/b/Application-Level-Architecture/Application-Level-Memory-Model/Endian-support/Control-of-the-endianness-mapping-scheme-in-ARMv7?lang=en
https://developer.arm.com/documentation/ddi0406/b/Application-Level-Architecture/Application-Level-Memory-Model/Endian-support/Control-of-the-endianness-mapping-scheme-in-ARMv7?lang=en
https://amazingalgorithms.com/definitions/mixed-endian/
https://amazingalgorithms.com/definitions/mixed-endian/

	Introduction
	QEMU
	OpenSBI
	Linux kernel
	Headers and libraries
	kvmtool
	Achievements
	Upstream
	Future

