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Abstract 

This paper introduces a CHISEL based RISC-V Vector (RVV) v1.0 coprocessor, named Vaquita, designed to 
enhance vector processing performance. The architecture features a meticulously optimized 4-stage pipeline 
that maximizes computational throughput and minimizes latency, enabling efficient handling of complex vector 
operations. Built on a portable coprocessor paradigm, The solution facilitates easy integration with a variety of 
RISC-V-based systems using its plug and play compatible interface, ensuring reliable interoperability with RISC-

V cores.

Introduction 

The RISC-V[1] Vector (RVV) extension[2] represents a 
transformative advancement in modern processor design, 
offering scalable and energy-efficient vector processing for 
data-parallel workloads such as AI, ML, and embedded 
signal processing. By enabling Single Instruction, Multiple 
Data (SIMD) operations with configurable vector lengths 
(VLEN) and register grouping (LMUL), RVV reduces 
instruction overhead while maintaining flexibility across 
diverse computational domains. 

  
The Vaquita co-processor, developed under the MERL 

(Micro Electronics Research Lab) initiative, is an open-
source project designed to enhance vector computation 
capabilities within RISC-V based architectures. Hosted on 
GitHub (https://github.com/merledu/vaquita), Vaquita 
provides a modular and configurable framework for 
integrating vector processing units into RISC-V systems. 

  
Vaquita is integrated with the NucleusRV core and tested 

for performance. The architecture is validated using the 
RISC-V Imperas test suite, ensuring compliance and 
reliability. With evaluations conducted at VLEN=256, 
Vaquita demonstrates its ability to efficiently execute 
complex vector operations. Its portable design allows easy 
integration across diverse RISC-V systems, making it 
suitable for a wide range of applications. 

  
To achieve optimal performance, this work introduces a 4-

stage pipeline architecture within the Vaquita co-processor, 
specifically tailored for the RISC-V Vector extension. The 
pipeline is designed to address common challenges such as 
data hazards and structural hazards, ensuring efficient 
execution of vector operations. By increasing throughput 
and reducing latency, the proposed architecture achieves 
maximum performance. Advanced techniques such as 
operand forwarding and hazard detection are employed to 
resolve dependencies and maintain pipeline integrity. This 
design not only enhances the co-processor’s performance 

but also ensures scalability, enabling it to handle 
increasingly complex workloads with ease. 

  
This paper presents a brief exploration of the Vaquita co-

processor architecture. We discuss the design and 
implementation of a 4-stage pipeline, highlighting its ability 
to resolve hazards and achieve high throughput. The portable 
and configurable nature of Vaquita makes it an ideal 
platform for developing vector processing units tailored to 
specific applications. By advancing the capabilities of the 
Vaquita co-processor, this work contributes to the growing 
RISC-V ecosystem, providing a robust and scalable solution 
for next-generation vector processing. 

 
 

Vaquita Micro Architecture 
The Vaquita vector co-processor is designed to accelerate 

vector operations and improve computational efficiency. It 
adheres to an in-order execution model, ensuring 
deterministic and predictable instruction flow. It efficiently 
manages data and control dependencies across the four 
pipeline stages while interfacing with the memory 
subsystem for data access and processing, as described in 
Figure1. 

 
 
 

Figure1: Overview of Vaquita Micro Architecture 

https://github.com/merledu/vaquita


 

 

 

Instruction Decode (ID): 
  The Instruction Decode (ID) stage is responsible for 

interpreting the fetched instructions. During this stage, the 
instruction decoder takes the instruction and the value of 
register rs1 from the core. It breaks down the instruction into 
its constituent parts, such as the opcode and operands (i.e. 
rs1). If an instruction (i.e. vsetvli) returns the rs1 value, it is 
sent back to the core during the Execute stage by the 
coprocessor. 

 

Execute (Ex): 
 In the execution (Ex) stage, the actual computation is 

performed by the Vector Arithmetic Logic Unit (Vec ALU), 
which is designed to execute parallelized vector operations. 
The dataflow within the Vec ALU is organized into lanes, 
where each lane processes a subset of vector elements 
according to the Selected Element Width (SEW). Each lane 
operates on 32-bit data, as defined by the Element Length 
(ELEN = 32). The number of lanes is dynamically 
determined based on the Vector Length (VLEN), allowing 
the system to adapt to varying computational demands. 
Additionally, the Forwarding Unit plays a critical role in this 
stage by resolving data hazards. It ensures that dependent 
instructions receive the correct intermediate results without 
causing pipeline stalls, thereby maintaining throughput of 
the execution process. 

  

Memory (MEM): 
MEM stage handles all memory-related operations, such 

as loading data from or storing data to memory. This stage is 
essential for instructions that require data transfer between 
the processor and memory. The memory unit ensures that 
data is correctly fetched or stored, and it coordinates with the 
pipeline to maintain data integrity. Efficient memory access 
is vital for the overall performance of the pipeline. 

  

Write-Back (WB): 
Finally, the Write-Back (WB) stage is where the results of 

the executed instructions are written back to the appropriate 
registers. This stage ensures that the computed values are 
stored in the correct locations, making them available for 
subsequent instructions. The WB module coordinates with 
the register file to update the registers, completing the 
instruction cycle. This stage is crucial for maintaining the 
correctness and continuity of the instruction flow. 

 

Synthesis Results of Vaquita Design 
We evaluated the Vaquita design with VLEN=64 and 

EEW=32 by synthesizing it using Synopsys Design 

Compiler with the FreePDK45 process at a target frequency 

of 1 GHz. The results show that Vaquita uses 50.2517 mW 

of power and occupies an area of 0.421 mm² on the chip, as 

shown in Table 1. 

 
 
 
 

 
 

Table 1: PPA Metrics for the Proposed Design 

Design Compiler Synopsis 

Technology FreePDK45 

Frequency 1GHz 

Total Power 50.2517mW 

Total Area 0.421mm2 

 

Conclusion and Future work: 

In conclusion, Vaquita has been successfully integrated 
with the NucleusRV core and validated using the RISC-V 
Imperas test suite, demonstrating compliance and efficient 
execution of vector operations. Its portable design makes it 
adaptable across various RISC-V systems[3,4,5], enabling 
diverse applications in AI, signal processing, and scientific 
computing. For future work, Add the remaining part of the 
vector extension, benchmarking Vaquita against existing 
vector co-processors will provide insights into its 
performance, power efficiency, and scalability. Comparative 
analysis with established vector architectures will help refine 
its design, optimize execution pipelines, and enhance overall 
efficiency. Further improvements could focus on reducing 
latency, optimizing memory access patterns, and expanding 
instruction support to meet the growing demands of high-

performance computing. 
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