

Vaquita: A Portable Four Stage Pipeline RISC-V Vector Co-
Processor

Muhammad Latif1, Shahzaib Kashif1, Dr. Farhan Ahmed Karim1 and Dr. Ali Ahmed2

1Department of Computer Science, Usman Institute of Technology (UIT)
2Department of Electrical Engineering, Usman Institute of Technology (UIT)

Abstract

This paper introduces a CHISEL based RISC-V Vector (RVV) v1.0 coprocessor, named Vaquita, designed to
enhance vector processing performance. The architecture features a meticulously optimized 4-stage pipeline
that maximizes computational throughput and minimizes latency, enabling efficient handling of complex vector
operations. Built on a portable coprocessor paradigm, The solution facilitates easy integration with a variety of
RISC-V-based systems using its plug and play compatible interface, ensuring reliable interoperability with RISC-

V cores.

Introduction

The RISC-V[1] Vector (RVV) extension[2] represents a
transformative advancement in modern processor design,
offering scalable and energy-efficient vector processing for
data-parallel workloads such as AI, ML, and embedded
signal processing. By enabling Single Instruction, Multiple
Data (SIMD) operations with configurable vector lengths
(VLEN) and register grouping (LMUL), RVV reduces
instruction overhead while maintaining flexibility across
diverse computational domains.

The Vaquita co-processor, developed under the MERL

(Micro Electronics Research Lab) initiative, is an open-
source project designed to enhance vector computation
capabilities within RISC-V based architectures. Hosted on
GitHub (https://github.com/merledu/vaquita), Vaquita
provides a modular and configurable framework for
integrating vector processing units into RISC-V systems.

Vaquita is integrated with the NucleusRV core and tested

for performance. The architecture is validated using the
RISC-V Imperas test suite, ensuring compliance and
reliability. With evaluations conducted at VLEN=256,
Vaquita demonstrates its ability to efficiently execute
complex vector operations. Its portable design allows easy
integration across diverse RISC-V systems, making it
suitable for a wide range of applications.

To achieve optimal performance, this work introduces a 4-

stage pipeline architecture within the Vaquita co-processor,
specifically tailored for the RISC-V Vector extension. The
pipeline is designed to address common challenges such as
data hazards and structural hazards, ensuring efficient
execution of vector operations. By increasing throughput
and reducing latency, the proposed architecture achieves
maximum performance. Advanced techniques such as
operand forwarding and hazard detection are employed to
resolve dependencies and maintain pipeline integrity. This
design not only enhances the co-processor’s performance

but also ensures scalability, enabling it to handle
increasingly complex workloads with ease.

This paper presents a brief exploration of the Vaquita co-

processor architecture. We discuss the design and
implementation of a 4-stage pipeline, highlighting its ability
to resolve hazards and achieve high throughput. The portable
and configurable nature of Vaquita makes it an ideal
platform for developing vector processing units tailored to
specific applications. By advancing the capabilities of the
Vaquita co-processor, this work contributes to the growing
RISC-V ecosystem, providing a robust and scalable solution
for next-generation vector processing.

Vaquita Micro Architecture
The Vaquita vector co-processor is designed to accelerate

vector operations and improve computational efficiency. It
adheres to an in-order execution model, ensuring
deterministic and predictable instruction flow. It efficiently
manages data and control dependencies across the four
pipeline stages while interfacing with the memory
subsystem for data access and processing, as described in
Figure1.

Figure1: Overview of Vaquita Micro Architecture

https://github.com/merledu/vaquita

Instruction Decode (ID):
 The Instruction Decode (ID) stage is responsible for

interpreting the fetched instructions. During this stage, the
instruction decoder takes the instruction and the value of
register rs1 from the core. It breaks down the instruction into
its constituent parts, such as the opcode and operands (i.e.
rs1). If an instruction (i.e. vsetvli) returns the rs1 value, it is
sent back to the core during the Execute stage by the
coprocessor.

Execute (Ex):
 In the execution (Ex) stage, the actual computation is

performed by the Vector Arithmetic Logic Unit (Vec ALU),
which is designed to execute parallelized vector operations.
The dataflow within the Vec ALU is organized into lanes,
where each lane processes a subset of vector elements
according to the Selected Element Width (SEW). Each lane
operates on 32-bit data, as defined by the Element Length
(ELEN = 32). The number of lanes is dynamically
determined based on the Vector Length (VLEN), allowing
the system to adapt to varying computational demands.
Additionally, the Forwarding Unit plays a critical role in this
stage by resolving data hazards. It ensures that dependent
instructions receive the correct intermediate results without
causing pipeline stalls, thereby maintaining throughput of
the execution process.

Memory (MEM):
MEM stage handles all memory-related operations, such

as loading data from or storing data to memory. This stage is
essential for instructions that require data transfer between
the processor and memory. The memory unit ensures that
data is correctly fetched or stored, and it coordinates with the
pipeline to maintain data integrity. Efficient memory access
is vital for the overall performance of the pipeline.

Write-Back (WB):
Finally, the Write-Back (WB) stage is where the results of

the executed instructions are written back to the appropriate
registers. This stage ensures that the computed values are
stored in the correct locations, making them available for
subsequent instructions. The WB module coordinates with
the register file to update the registers, completing the
instruction cycle. This stage is crucial for maintaining the
correctness and continuity of the instruction flow.

Synthesis Results of Vaquita Design
We evaluated the Vaquita design with VLEN=64 and

EEW=32 by synthesizing it using Synopsys Design

Compiler with the FreePDK45 process at a target frequency

of 1 GHz. The results show that Vaquita uses 50.2517 mW

of power and occupies an area of 0.421 mm² on the chip, as

shown in Table 1.

Table 1: PPA Metrics for the Proposed Design

Design Compiler Synopsis

Technology FreePDK45

Frequency 1GHz

Total Power 50.2517mW

Total Area 0.421mm2

Conclusion and Future work:

In conclusion, Vaquita has been successfully integrated
with the NucleusRV core and validated using the RISC-V
Imperas test suite, demonstrating compliance and efficient
execution of vector operations. Its portable design makes it
adaptable across various RISC-V systems[3,4,5], enabling
diverse applications in AI, signal processing, and scientific
computing. For future work, Add the remaining part of the
vector extension, benchmarking Vaquita against existing
vector co-processors will provide insights into its
performance, power efficiency, and scalability. Comparative
analysis with established vector architectures will help refine
its design, optimize execution pipelines, and enhance overall
efficiency. Further improvements could focus on reducing
latency, optimizing memory access patterns, and expanding
instruction support to meet the growing demands of high-

performance computing.

References:

[1] Waterman A, Lee Y, Patterson D, Asanovic K, level Isa
VI, Waterman A, Lee Y, Patterson D. The RISC-V
instruction set manual. Volume I: User-Level ISA’, version.
2014 Apr;2.

[2] RISC-V International. RISC-V ”V” Vector Extension
Version 1.0. https://github.com/riscv/riscv-v-
spec/releases/tag/v1.0,2021. [Online; accessed 6-Aug-2024]

[3] Patsidis, Kariofyllis, Chrysostomos Nicopoulos,
Georgios Ch Sirakoulis, and Giorgos Dimitrakopoulos.
"RISC-V 2: a scalable RISC-V vector processor." In 2020
IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1-5. IEEE, 2020.

[4] Johns, Matthew, and Tom J. Kazmierski. "A minimal
RISC-V vector processor for embedded systems." In 2020
Forum for Specification and Design Languages (FDL), pp.
1-4. IEEE, 2020.

[5] Lee, Joseph KL, Maurice Jamieson, and Nick Brown.
"Backporting risc-v vector assembly." In International
Conference on High Performance Computing, pp. 433-443.
Cham: Springer Nature Switzerland, 2023.

	Abstract
	Introduction

