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Abstract

Vicuna 2.0 is an open-source SystemVerilog implementation of the Zve32x, Zve32f, and Zvfh extensions built
upon the previous work of the Vicuna project[1]. Vicuna 2.0 is extremely configurable, allowing for detailed
analysis and evaluation of vector unit configurations targeted for specific workloads as demonstrated by a design
space exploration in this work. Vicuna 2.0 is believed to be the first open-source implementation of the Zve32f
and Zve32f_Zvfh subsets of the RISC-V Vector Extension.

Background

The RISC-V Vector (V) Extension, ratified in 2021,
also includes extension subsets targeted at lower cost
embedded devices [2]. Specifically, the Zve32x Exten-
sion and the Zve32f Extension, which provide support
for basic vector integer and IEEE 754 single-precision
floating-point operations. The Zvfh extension is also
included in the specification and provides support
for IEEE 754 half-precision floating-point operations.
Together, these extensions allow for the addition of dif-
ferent levels of vector support and provide a very large
design space for embedded vector processors when com-
bined with the customization options already present
in the V Extension.

The original Vicuna project by Platzer and
Puschner is a configurable, timing-predictable vec-
tor co-processor implementing a subset of the Zve32x
Extension in SystemVerilog[1]. The co-processor im-
plements the eXtension InterFace (XIF) provided by
the OpenHW Group [3], allowing for connection to
any core such as the CV32E40X[4]. The configuration
features allow for users to define their own configu-
rations, with variable vector register width (VREG_W),
number and configuration of vector pipelines, datap-
ath width of each pipeline (VLANE_W), as well as many
other features of the design. The chosen configuration
can then be simulated using Verilator[5].

Improvements Over the Original
Vicuna Project

Vicuna 2.0 provides multiple upgrades when compared
to the original Vicuna project:

• Addition of a vector division unit. Completes
support for the Zve32x extension.
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• Optional support for the Zve32f and F exten-
sions. Includes the addition of a vector floating-
point unit and a scalar floating-point co-processor
both based on the CV-FPU (Formerly known as
FP_NEW)[6].

• Optional support for the Zvfh and Zfh exten-
sions. Upgrades floating-point units to support
half-precision operations.

• Allow for scalar execution of benchmarks for com-
parison purposes.

• Improved memory interface to increase efficiency
of vector loads and stores.

• Expanded data collection during Verilator simu-
lations.

• Various RTL bug fixes.
• CMake build system for user-friendly configura-

tion and addition of new tests and benchmarks.

Figure 1: Block Diagram of the Vector Co-Processor in
the ’Dual Pipeline’ Configuration
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Demonstration of Vicuna 2.0

In order to demonstrate the capabilities of Vicuna
2.0 as a platform, a design space exploration was per-
formed for the anomaly detection benchmark (toycar)
from the MLPerf Tiny benchmark suite for embed-
ded machine learning inference[7]. Using the provided
trained models and input data, INT8, FP32, and FP16
quantized versions of the benchmark were made. Ten-
sorflow Lite for Microcontrollers (TFLM) was used
to deploy these models [8]. As TFLM does not na-
tively support operations with FP16, new kernels were
included to allow for these operations. LLVM autovec-
torization was used to generate vectorized code for
these benchmarks.

Vicuna was configured with two vector pipelines,
one containing the Vector Load/Store unit and the
other containing all other functional units. The first
pipeline containing most functional units has a dat-
apath width of VLANE_W bits. The width of second
pipeline containing the vector load/store unit, VMEM_W,
was fixed to 32 bits to represent an embedded system
with a limited memory interface. The vector unit was
connected to the 4-stage CV32E40X scalar core.

For the experiments, the VREG_W was varied from
128 to 4096 bits. All valid values of VLANE_W were
tested. The top level Verilator simulation was used to
gather data during simulations, such as total cycles
and total instructions. In addition, the opcode of each
executed and stalled instruction was logged.

Design Space Exploration Results

Table 1 shows the configuration of Vicuna with fastest
execution time (in total number of cycles) for the
Zve32x, Zve32f, and Zvfh implementations. In ad-
dition, the CPI and speedup factor compared to the
respective scalar unit are also reported. An interesting
observation is that the Zvfh system has an optimal
VREG_W that is half that of the Zve32f system, caused
by the use of half-precision floating-point values as
intermediates.

The instruction stall data provides more insights,
mainly that the floating-point systems are considerably
more memory-bound than the integer one. Memory
loads account for 52.1% of the total runtime for Zve32f
and 56.2% for Zvfh. This is due to the use of their
storage formats for calculations, which removes the
need for the conversion operations used by the Zve32x
system. This implies that increasing VMEM_W could
drastically improve performance. As expected, run-
ning the experiment again with a VMEM_W of 64 bits
results in a speedup of 1.19x and 1.11x for the Zve32f
and Zvfh systems respectively when compared the the
systems in Table 1.

Zve32x Zve32f Zvfh

VREG_W Bits 1024 512 256
VLANE_W Bits 512 256 128
Total Cycles 1298593 1124928 865799

CPI 2.15 2.07 3.15
Speedup vs. Scalar 2.67x 3.00x 3.30x

Table 1: Fastest Configuration of Vicuna for INT8, FP32,
and FP16 toycar

Conclusion and Future Work

Vicuna 2.0 provides a significant upgrade to the orig-
inal Vicuna project, completing support for Zve32x
and adding support for Zve32f and Zvfh. As demon-
strated here, it can be used as a platform for design
space exploration while making use of the Verilator
simulation environment to gather detailed information
on the state of the vector unit for further analysis.

Future work for this project involves implementation
of Vector Cryptography Extensions, support for RTL
synthesis, investigation into pipelining functional units,
and vector pipeline visualization efforts.

Vicuna 2.0, along with all dependencies and pro-
grams used for the experiments are open-source1, and
any contributions are welcome.
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