
Vicuna 2.0 : A Configurable RISC-V Embedded
Vector Hardware Platform

J. Parker Jones1 , Philipp van Kempen2, and Daniel Müller-Gritschneder1
1Embedded Computing Systems, Technical University of Vienna

2Chair of Electronic Design Automation, Technical University of Munich

Corresponding author: jefferson.jones@tuwien.ac.at

Background
The RISC-V Vector (V) Extension provides many levels of vector support for
embedded devices [2].
•Zve32x - embedded vector integer
•Zve32f - embedded vector single-precision floating-point
•Zvfh - vector half-precision floating point
The original Vicuna project [6] provides an incomplete implementation of the
Zve32x extension as a co-processor using the eXtension InterFace (XIF) [4].
Vicuna is highly configurable, allowing users to configure the vector register
width (VREG W), number and configuration of vector pipelines, and datapath
width of each pipeline (VLANE W).

Improvements with Vicuna 2.0
• Addition of a vector division unit. Completes support for the Zve32x exten-

sion.
• Optional support for the Zve32f extension. Includes the addition of a vector

floating-point unit and a scalar floating-point co-processor both based on the
CV-FPU (Formerly known as FP NEW) [5].

• Optional support for the Zvfh extension. Upgrades floating-point units to
support half-precision operations.

• Improved memory interface to increase efficiency of vector loads and stores.
• Expanded data collection during Verilator simulations.
• Various RTL bug fixes.
• CMake build system for user-friendly configuration, addition of new tests

and benchmarks, and integration into other projects.

Figure 1: Block Diagram of the Vector Co-Processor in the ’Dual Pipeline’ Configu-
ration for Zve32f

Demonstration of Vicuna 2.0 with Machine
Learning Inference
In order to demonstrate the stability of Vicuna 2.0 and its use as a design testing
platform, a design space exploration was performed for the anomaly detection
benchmark (toycar) from the MLPerf Tiny benchmark suite for embedded ma-
chine learning inference [1]. The testing environment was set up as follows:
• INT8, FP32, and FP16 quantized versions of the benchmark were made from

provided trained model.
• Tensorflow Lite for Microcontrollers (TFLM) was used to deploy these models

[3]. New kernels were added to provide FP16 support.
• LLVM autovectorization was used to generate vectorized code.
• Vicuna was configured in the ’Dual-Pipeline’ configuration shown in Figure

1. VMEM W was fixed to 32 bits.
• Vicuna was connected to the CV32E40X scalar core, with an additional scalar

floating-point co-processor included if required.

•VREG W was varied from 128 to 4096 bits and all valid values of VLANE W were
tested.

• Results for each vectorized benchmark were compared their respective scalar
execution.

• The Verilator simulation environment was used to collect cycle, instruction,
and stall data.

Design Space Exploration Results
Zve32x Zve32f Zvfh

VREG W Bits 1024 512 256
VLANE W Bits 512 256 128
Total Cycles 1298593 1124928 865799

CPI 2.15 2.07 3.15
Speedup vs. Scalar 2.67x 3.00x 3.30x

% Stall Cycles at Memory 34.1% 43.2% 56.2%

Table 1: Fastest Configuration of Vicuna for INT8, FP32, and FP16 toycar

From the results in Table 1, the floating-point configurations perform better
than the integer configuration. From the instruction usage data, this can be
attributed to the sign extension operations necessary for the integer-only con-
figuration, as the floating-point configurations can perform operations with the
data source format.
As a result of this lesser load on the computational functional unit, both of

the floating-point benchmarks are more memory bound, implying they would
benefit from a larger VMEM W. Running these tests again with VMEM W = 64 bits
results in a speedup of 1.19x and 1.11x for the Zve32f and Zvfh systems re-
spectively.

Conclusion and Future Work
Vicuna 2.0 provides a significant upgrade to the original Vicuna project, com-
pleting support for Zve32x and adding support for Zve32f and Zvfh. As
demonstrated here, it can be used as a platform for design space exploration
while making use of the Verilator simulation environment to gather detailed
information on the state of the vector unit for further analysis.

Future work for this project involves implementation of Vector Cryptography
Extensions, support for RTL synthesis, investigation into pipelining functional
units, and vector pipeline visualization efforts.

Vicuna 2.0, along with all dependencies and programs used for the experi-
ments are open-source at https://github.com/vproc, and any contribu-
tions are welcome.

References
[1] C. Banbury, V. J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly, P. Mon-

tino, D. Kanter, S. Ahmed, D. Pau, U. Thakker, A. Torrini, P. Warden, J. Cor-
daro, G. D. Guglielmo, J. Duarte, S. Gibellini, V. Parekh, H. Tran, N. Tran,
N. Wenxu, and X. Xuesong. Mlperf tiny benchmark, 2021.

[2] R.-V. Collaboration. The risc-v instruction set manual, vol 1, unpriveleged
architecture, version 20240411.

[3] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nap-
pier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden. Tensorflow lite
micro: Embedded machine learning on tinyml systems, 2021.

[4] O. Group. Openhw group specification: Core-v extension inter-
face (cv-x-if). https://docs.openhwgroup.org/projects/
openhw-group-core-v-xif/en/latest/. Accessed: 2025-02-07.

[5] S. Mach, F. Schuiki, F. Zaruba, and L. Benini. Fpnew: An open-source multi-
format floating-point unit architecture for energy-proportional transpreci-
sion computing, 2020.

[6] M. Platzer and P. Puschner. Vicuna: A Timing-Predictable RISC-V Vector
Coprocessor for Scalable Parallel Computation. In 33rd Euromicro Conference
on Real-Time Systems (ECRTS 2021), 2021.

12-15th May 2025 – RISC-V Summit Europe

https://github.com/vproc
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/

	Background
	Improvements with Vicuna 2.0
	Demonstration of Vicuna 2.0 with Machine Learning Inference
	Design Space Exploration Results
	Conclusion and Future Work

