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Abstract

OpenHW Group’s RISC-V CVA6 core, while being heavily configurable, even supporting superscalar execution,
is still limited to in-order issue. Out-of-order execution allows for more efficient instruction scheduling in the
case of non-predictable latency, such as memory accesses for example. We propose adaptations to the CVA6
core pipeline by adding one pipeline stage and reorder queues to issue most instructions out-of-order. Our
work is also superscalar-ready as multiple instruction queues are instantiated in parallel. We measured a 10%
performance increase on Coremark with our modifications.

Introduction

OpenHW Group 64-bit RISC-V CVA6 [1, 2] core is
offering application-class performance for embedded
usages. It features scalar and superscalar in-order
execution implemented with 6 pipeline stages and
runs fully-fledged operating systems such as Linux. A
custom extension port also allows for taking advantage
of RISC-V ISA extensibility.

In the context of the European Processor Initiative
project, we used the CVA6 to implement the VaRi-
able Precision processor [3] (VRP). It implements the
Xvpfloat RISC-V ISA extension to support variable
and extended precision floating point operations for
scientific computing. When optimizing linear algebra
kernels, we encountered two difficulties:

1. Some kernels, e.g. sparse matrix-vector multipli-
cation, are highly irregular and it is thus difficult
to apply static optimization techniques such as
loop unrolling.

2. As latency and throughput of extended precision
instructions vary with precision, differently from
one instruction to another, perfect instruction
scheduling changes with precision. As our goal
with this accelerator is to avoid recompilation
when changing precision, instruction scheduling
may be suboptimal depending on chosen compute
precision.

These observations motivated us to implement out-
of-order issue of instructions in our modified CVA6
core, leading to the design of the next generation of
the VRP, called VXP (Variable eXtended Precision
processor). While we branched our CVA6 in 2020, our
modifications still apply to up-to-date vanilla CVA6.

∗Corresponding author: eric.guthmuller@cea.fr

Design Objectives

To efficiently mask high latency of our Xvpfloat in-
structions (up to 20 cycles), we wished to support up
to 64 in-flight instructions. Total reordering window
had to be in the same ballpark. We also wanted our
design to be ready for future superscalar execution, as
already proposed for the vanilla CVA6 [4].

As the VXP is targeting linear algebra kernels
mostly written in C and assembly, our applications are
not branch-heavy, especially regarding indirect branch
instructions. That is why we chose to keep branch
handling in the first execute stage, blocking issue of
new instructions until register dependencies are solved.
This is a drawback when dealing with function pointers
such as C++ class vtables for example.

Finally, we did not want to deal with too much
pipeline flushes to avoid cancelling already issued
Xvpfloat instructions that are energy intensive. On top
of preventing branch speculation after the issue stage,
we also prevented load instruction speculation as long
as address resolution of previous memory requests is
not done. These decisions, while having a negative
impact on Instructions Per Cycle (IPC), benefit energy
efficiency and simplify the hardware.

Main Pipeline Modifications

An overview of the VXP pipeline featuring 7 stages
is shown in Figure 1. First, we chose to implement
register renaming of all register banks as it naturally
solves a lot of issues regarding clobber of destination
registers and allow for more in-flight instructions. Each
rename table and corresponding register file depth is
configurable. In the VXP, all register files have 64
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Figure 1: VXP pipeline microarchitecture

entries.
We settled on having multiple independent smaller

reordering queues (16 entries in VXP) instead of a
bigger central one, as: 1/ it would scale better when
going superscalar, and 2/ it allows each queue to be
specialized. So our design has 4 instructions queues :
2 for IMA instructions, 2 for Xvpfloat instructions, in
each case with separate load/store queues(LSQ).

As a general design principle, we settled on stor-
ing only addresses of memory requests in the reorder
queues which are necessary to enforce memory con-
sistency. All other source register values are read
directly from the register files or bypassed in the same
cycle of issue. This reduces the cost of the reorder
queues entries, at the expense of more register files
read ports. A wide superscalar design would probably
necessitate putting everything in the reorder queues
and rely entirely on the register bypass network.

Memory consistency is ensured by implementing a
dependency matrix in each LSQ. An address compara-
tor per LSQ entry allows for updates of this matrix.
The integer LSQ implements one Address Genera-
tion Units (AGU) per entry, while the Xvpfloat LSQ
(VPLSQ) implements only two as they are more costly,
requiring integer multiplication.

The integer register file has 5 read ports: 2 for
CSR/branch in EX1 stage, 2 for arithmetic instruc-
tions and 1 for store instructions. It also feature 4
write ports: one for the load unit, one for the ALU,
one shared between multiplication and branch, and
one for commit to handle CSR updates and AMOs.

Finally, we simplified the scoreboard by first remov-
ing the 64-bit result as register files are written directly
thanks to renaming, and also by removing the excep-
tion field as we now only store the oldest exception.

This saves 193 bits in each scoreboard entry. We also
improved the store buffer design by fusing speculative
and committed queues, while allocation is done in
issue stage to keep store order.

Conclusion

While designing the VXP, the next generation of our
extended variable precision accelerator, we identified
out of order execution as a key enabler for higher IPC.
We added the necessary hardware to our modified
CVA6 core to reach up to 64 in-flight instructions and
a similar reorder window. The VXP is successfully
synthesized at 90 MHz on FPGA and achieves a 10%
better performance than the previous generation VRP
on Coremark.
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