
200

7

Implementing out-of-order issue in CVA6 

for efficient support of long variable 

latency instructions

E. Guthmuller1, T. Khandelwal1

1 Univ. Grenoble Alpes, CEA, LIST, 38000 Grenoble

E. Guthmuller & T. Khandelwal

CEA List

eric.guthmuller@cea.fr

Context:
- VRP [1] core developed in the context of European Processor Initiative (EPI) with support of

floating point computing with up to 512 bits of mantissa

- Fork of CVA6 => in-order issue of instructions

- Long (>10 cycles) and variable instruction latency => code difficult to optimize, sometimes

impossible due to conditional statements

Our proposal:
- The VXP core, as an evolution of the VRP, now supports Out-of-Order (OoO) execution

- It implements a variant of Tomasulo’s algorithm:

• One more pipeline stage, called “dispatch”

• Register renaming for all register banks

• Configurable bypass network

• No speculated issue (branch, load) to avoid complex store queues in VPFPU

- Some generic CVA6 optimizations for better core scalability: simplified scoreboard, improved

store queue, better instruction throughput, …

5R4W integer register file
- Speculative & committed store queues 

fused, reservation in issue stage

- RAW snoop in store queue

Load/Store reordering queue

- One Address Generation Unit (AGU) per 

entry+bypass

- Dependency matrix (no RAW and WAW 

speculation)

- Address stored in entrySimplified scoreboard (SB):

- No result stored in SB

- Exceptions handled separately

=> 200+ bits reduction per entry

Branch Jump Table

=> Instruction type

prediction to improve 

instruction throughput

Renaming tables for each register bank

- Support for move elision

- Single-cycle flush by storing both a 

speculative and a committed table

- One instruction per cycle in issue stage

- Configurable bypass network (source to IQ latency)

- CSR & Branch instructions stall the pipeline in case 

of hazards 

Integer reordering queue

Reordering queues principles:

- Age-ordered issue window with 

continuous space reclaiming

- Configurable depth

- Register values not stored in 

queue (except address in LSQs)

7-stage processor pipeline

=> Additional Dispatch stage

Fig 1. Starting point: VRP [1], CVA6-based in-order

Fig 2. VXP, Variable eXtended Precision processor, with out-of-order execution (main modification of integer pipeline highlighted)

Fig 3. Sparse Matrix-Vector multiplication (SpMV) performance, 

measured on multiple sparse matrix structures and in function of 

vector precision (normalized with respect to in-order execution)

[1] E. Guthmuller, et al., “Xvpfloat: RISC-V ISA Extension for Variable Extended Precision Floating Point Computation”, (2024) IEEE Transactions on Computers

Motivation & Microarchitecture

Results

Main design goals of OoO execution achieved:
- Performance of non-optimized (unrolled) BLAS kernels now on par with hand-tuned

assembly code

- Sparse matrix-vector multiplication up to 75% faster depending on matrix structure and

vector precision

Other improvements:
- Integer performance gains => 10% higher Coremark performance

- 10% frequency increase on FPGA of VXP over VRP

Future works:
- UVM verification using same approach as standard CVA6

- ASIC synthesis and Power Performance Area assessment

This work has been performed in the context of the EPI project. EPI has received funding from the

European High Performance Computing Joint Undertaking (JU) under Framework Partnership

Agreement No 800928 and Specific Grant Agreement No 101036168 (EPI SGA2).

Implementing

OoO execution


