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Context:
- VRP [1] core developed in the context of European Processor Initiative (EPI) with support of

floating point computing with up to 512 bits of mantissa

- Fork of CVA6 => in-order issue of instructions

- Long (>10 cycles) and variable instruction latency => code difficult to optimize, sometimes

impossible due to conditional statements

Our proposal:
- The VXP core, as an evolution of the VRP, now supports Out-of-Order (OoO) execution

- It implements a variant of Tomasulo’s algorithm:

• One more pipeline stage, called “dispatch”

• Register renaming for all register banks

• Configurable bypass network

• No speculated issue (branch, load) to avoid complex store queues in VPFPU

- Some generic CVA6 optimizations for better core scalability: simplified scoreboard, improved

store queue, better instruction throughput, …

5R4W integer register file
- Speculative & committed store queues 

fused, reservation in issue stage

- RAW snoop in store queue

Load/Store reordering queue

- One Address Generation Unit (AGU) per 

entry+bypass

- Dependency matrix (no RAW and WAW 

speculation)

- Address stored in entrySimplified scoreboard (SB):

- No result stored in SB

- Exceptions handled separately

=> 200+ bits reduction per entry

Branch Jump Table

=> Instruction type

prediction to improve 

instruction throughput

Renaming tables for each register bank

- Support for move elision

- Single-cycle flush by storing both a 

speculative and a committed table

- One instruction per cycle in issue stage

- Configurable bypass network (source to IQ latency)

- CSR & Branch instructions stall the pipeline in case 

of hazards 

Integer reordering queue

Reordering queues principles:

- Age-ordered issue window with 

continuous space reclaiming

- Configurable depth

- Register values not stored in 

queue (except address in LSQs)

7-stage processor pipeline

=> Additional Dispatch stage

Fig 1. Starting point: VRP [1], CVA6-based in-order

Fig 2. VXP, Variable eXtended Precision processor, with out-of-order execution (main modification of integer pipeline highlighted)

Fig 3. Sparse Matrix-Vector multiplication (SpMV) performance, 

measured on multiple sparse matrix structures and in function of 

vector precision (normalized with respect to in-order execution)

[1] E. Guthmuller, et al., “Xvpfloat: RISC-V ISA Extension for Variable Extended Precision Floating Point Computation”, (2024) IEEE Transactions on Computers

Motivation & Microarchitecture

Results

Main design goals of OoO execution achieved:
- Performance of non-optimized (unrolled) BLAS kernels now on par with hand-tuned

assembly code

- Sparse matrix-vector multiplication up to 75% faster depending on matrix structure and

vector precision

Other improvements:
- Integer performance gains => 10% higher Coremark performance

- 10% frequency increase on FPGA of VXP over VRP

Future works:
- UVM verification using same approach as standard CVA6

- ASIC synthesis and Power Performance Area assessment
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