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Abstract

Adapting and optimizing systems for maximum performance under tight area and power constraints in a cost-
effective way requires design flows that are flexible, provide quick results, and offer automation support to reduce
time-intensive and error-prone manual coding. High-Level Synthesis (HLS) is a design process that transforms
high-level software algorithms into hardware descriptions on RTL, enabling design exploration and optimization
of stringent design constraints. This work presents an automated methodology leveraging HLS for hardware
acceleration in RISC-V based open-source cores supporting CV-X-IF, an interface enabling extension of RISC-V
cores by custom instructions. This approach, combining hardware synthesis with a processor-agnostic extension
interface, enables designers to efficiently accelerate and optimize their diverse applications.

Introduction

Optimizing a system’s performance, power, and area
(PPA) is a significant challenge in modern computing.
The extension of processors with application-specific
hardware acceleration is one key strategy to meet
specialized workload requirements. Alongside the need
for maximized resource efficiency, rapid time-to-market
is essential to ensure competitiveness. However, a
major limitation to shortening development cycles is
the time-consuming and error-prone nature of manual
coding. In novel processor architectures like RISC-V,
there is a lack of flexible tools for extending processors
with custom instructions (CIs) and tailored hardware
in an automated fashion.

To address this problem, we propose a RISC-V
Hardware Acceleration Flow facilitating automated
generation and integration of CIs for a broad range of
applications. The flow is built using the High-Level
Synthesis (HLS) tool Catapult HLS [1]. HLS is a tech-
nology that synthesizes an RTL implementation in
a hardware description language, typically VHDL or
Verilog, from an algorithm implemented in a high-level
language, such as C, C++, or SystemC (as illustrated
in Figure 1). HLS is used in this flow to automatically
create an optimized RTL Wrapper Coprocessor imple-
mentation from a set of one or more software functions
from the software application. Migrating these func-
tions from software to hardware in this manner enables
system designers to meet performance goals otherwise
unachievable with software alone.

The generated Wrapper Coprocessors support the
Core-V eXtension interface (CV-X-IF) specification
of the OpenHW Group [2], making them processor-
agnostic as long as the targeted processors support
CV-X-IF.
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Figure 1: Concept diagram of High-Level Synthesis
(HLS) [1]. The high-level input is represented by the inputs
above, design constraints and library inputs on the right,
and RTL output below the HLS tool.

Methodology

The proposed flow is based on our prior work [3] and
illustrated in Figure 2. In summary, an algorithm in
high-level C/C++ description is partitioned into two
parts: One targeting hardware and one targeting soft-
ware. The hardware part is automatically extended
by components for CV-X-IF, and RTL code is auto-
matically created using Catapult HLS. The software
algorithm is automatically adapted to call the gener-
ated CI hardware and compiled for the RISC-V core.

CI Selection, HLS Adaption The user-selected
application in form of a C/C++ algorithm must
first be analyzed by the designer to define acceler-
ator functions, code snippets suitable for acceleration.
The designer marks these code snippets with C/C++
#pragma-statements. After selection, the designer
may adapt C/C++ accelerator functions for High-
Level Synthesis. Advanced HLS tools are able to
synthesize almost all modern C++ constructs that do
not dynamically allocate memory. However, certain
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Figure 2: Flow overview: The squares (left) depict the
flow’s sub-steps, the round boxes represent their in- and
outputs. The boxes to the right indicate steps completed by
the designer and flow-assisted steps, respectively.

RISC-V Core

CV32E40X / CVA6

CV-X-IF

eXtension

Interface

Wrapper

Coprocessor

Accelerator

Functions

Instruction

Decoder

Issue 

Handler

Result 

HandlerRAM

(.hex)

Figure 3: RTL overview of the wrapper integrated into a
resulting system. Core and wrapper are connected via the
CV-X-IF, the inner boxes indicate important sub-blocks.

coding styles, pragmas, and HLS tool settings may be
used to achieve RTL implementations comparable to
handcrafted designs. In addition, bit accurate data
types are used in the high-level language description
(C/C++ in case of this flow) so the performed compu-
tations will exactly, bit-for-bit, match the synthesized
RTL. This also allows the algorithm to be partially val-
idated in the high-level language representation, and
for that representation to be used to create expected
results for verification of the RTL.

HW/SW Partitioning After these manual steps,
the designer uses the flow’s HW/SW partitioning tool
to split the pragma-annotated C/C++ algorithm into
extracted C/C++ accelerator functions and remaining
C/C++ software including custom assembly instruc-
tions to call these accelerator functions.

SW Compilation, HW Generation The C/C++
software is compiled utilizing GCC. The C/C++ accel-
erator functions are embedded in a CV-X-IF-compliant
C/C++ wrapper description. Based on this descrip-
tion, Catapult HLS generates the RTL wrapper copro-
cessor and delivers estimations about PPA for spec-
ified target systems. The designer may also utilize
all capabilities of Catapult, including configuring and

optimizing the RTL design and its constraints.

System integration, RTL simulation To verify
functionality and timing, the generated RTL wrapper
is embedded into a test environment consisting of the
wrapper, CV32E40X RISC-V core, and supporting
modules. Questa is utilized for RTL simulation of the
environment to deliver information about functional
correctness and timing details of the application.

Results and Future Work

A major goal of developing the flow is automating man-
ual coding tasks. In our previous work [3] covering CI
integration, yet without HLS-based accelerator func-
tion generation, we proposed approaches to analyze
the potential of working hours reduced when utilizing
the flow. The addition of HLS adds an important
automation step to this analysis.

The optimization potential of the generated sys-
tem depends on the input algorithm and selected CIs.
While a comprehensive analysis comparing the accel-
erated systems and software-only solutions running on
the CV32E40X is ongoing, first tests with a moder-
ately complex AES-128 use case yield a cycle count
reduction of around 65% and a utilization overhead of
minimal impact compared to an overall design (e.g.,
an area score of around 1000 compared to about 30000
for the CVA6 RISC-V core).

In future work, we plan to focus on automating the
selection of CIs to leverage more efficient architecture
exploration and to identify optimized CI candidates
based on the application’s requirements.
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