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Background

• Performance: Maximizing performance within a tight area and power budget is 
of increasing demand in today‘s system development.

• Specialization: One key strategy to meet specialized workload requirements is 
extending processors with application-specific hardware acceleration.

• Time-to-Market: An adaptable and automated design flow is crucial to ensure 
rapid time-to-market. 

Hardware Acceleration Flow

Coprocessor Generation

• Hardware Acceleration: This work proposes an automated RISC-V flow

• based on Custom Instructions (CIs).

• to reduce time-intensive and error-prone manual coding.

• for a broad range of applications.

• HLS: The flow leverages the High-level Synthesis (HLS) tool Catapult HLS [1] to 

generate RTL Wrapper Coprocessor implementations from a set of Custom 

Instructions defined by the designer in form of C/C++ accelerator functions.

• CV-X-IF: The generated coprocessors are compliant to the OpenHW Group‘s 

Core-V eXtension interface [2], ensuring compatibility with any processor 

supporting CV-X-IF, such as the CV32E40X or CVA6.

High-level Synthesis

• CI Selection: The designer must first analyze the given C/C++ application and define Custom Instructions in 

form of C/C++ accelerator functions, code snippets suitable for acceleration. 

• HLS Adaption: Afterwards, the designer may adapt the selected C/C++ accelerator functions for HLS. While 

advanced HLS tools are able to synthesize almost all modern C/C++ constructs, certain coding styles, 

bit-accurate data types, pragmas, and HLS tool settings may improve results. 

• HW/SW Partitioning: The HW/SW partitioning tool of the flow splits the designer‘s resulting C/C++ input 

into extracted C/C++ accelerator functions, and remaining C/C++ software including calls of the accelerator 

functions.

• SW Compilation: The C/C++ software is compiled utilizing GCC.

• HW Generation: The C/C++ accelerator functions are embedded in a CV-X-IF-compliant C/C++ wrapper 

coprocessor description. Based on this, Catapult HLS is used to generate the RTL coprocessor and deliver 

PPA estimations for the specified target systems and design constraints.

• Integration, RTL simulation: The generated RTL wrapper and RISC-V CV32E40X are integrated in a test 

environment, using Questa for RTL simulation to verify functionality and timing.
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• Automation: As part of our previous work [3], we proposed analysis 

approaches of the potential reduction of working hours when utilizing the flow. 

HLS adds an important automation step to the flow.

• PPA: The generated system’s optimization potential regarding performance, 

power, and area depend on the input algorithm and selected Custom 

Instructions. While a comprehensive PPA analysis for different use cases is 

ongoing within TRISTAN, first comparisons of accelerated systems with 

software-only solutions for an AES-128 algorithm suggest

• a cycle count reduction of around 65% for the CV32E40X.

• an area score of minimal impact of around 1000 compared to about 30000 

for the CVA6.

• CI Selection: In future work, we plan to automate algorithm analysis and CI 

selection, which are, up to now, manually performed by the designer.

• High-level to RTL: HLS supports synthesis of RTL designs (e.g., in VHDL or 

Verilog) from high-level description languages (e.g., C, C++, or SystemC) [1].

• Verification and Validation: Using bit-accurate 

data types in the high-level language ensures that computations match the 

synthesized RTL bit-for-bit, enabling partial validation of the algorithm in the 

high-level description and creation of expected results for the RTL verification.

• Architecture Exploration: HLS 

enables the evaluation of 

multiple RTL variants based on 

one high-level description, 

enhancing productivity and 

reducing manual coding errors.
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