
Automating RISC-V Custom Instruction Integration 
leveraging High-Level Synthesis

Florian Egert, Bernhard Fischer
Electronics Design and Integrated Circuits, Siemens

Contact: florian.egert@siemens.com, bernhard.bf.fischer@siemens.com

Background

• Performance: Maximizing performance within a tight area and power budget is 
of increasing demand in today‘s system development.

• Specialization: One key strategy to meet specialized workload requirements is 
extending processors with application-specific hardware acceleration.

• Time-to-Market: An adaptable and automated design flow is crucial to ensure 
rapid time-to-market. 

Hardware Acceleration Flow

Coprocessor Generation

• Hardware Acceleration: This work proposes an automated RISC-V flow

• based on Custom Instructions (CIs).

• to reduce time-intensive and error-prone manual coding.

• for a broad range of applications.

• HLS: The flow leverages the High-level Synthesis (HLS) tool Catapult HLS [1] to 

generate RTL Wrapper Coprocessor implementations from a set of Custom 

Instructions defined by the designer in form of C/C++ accelerator functions.

• CV-X-IF: The generated coprocessors are compliant to the OpenHW Group‘s 

Core-V eXtension interface [2], ensuring compatibility with any processor 

supporting CV-X-IF, such as the CV32E40X or CVA6.

High-level Synthesis

• CI Selection: The designer must first analyze the given C/C++ application and define Custom Instructions in 

form of C/C++ accelerator functions, code snippets suitable for acceleration. 

• HLS Adaption: Afterwards, the designer may adapt the selected C/C++ accelerator functions for HLS. While 

advanced HLS tools are able to synthesize almost all modern C/C++ constructs, certain coding styles, 

bit-accurate data types, pragmas, and HLS tool settings may improve results. 

• HW/SW Partitioning: The HW/SW partitioning tool of the flow splits the designer‘s resulting C/C++ input 

into extracted C/C++ accelerator functions, and remaining C/C++ software including calls of the accelerator 

functions.

• SW Compilation: The C/C++ software is compiled utilizing GCC.

• HW Generation: The C/C++ accelerator functions are embedded in a CV-X-IF-compliant C/C++ wrapper 

coprocessor description. Based on this, Catapult HLS is used to generate the RTL coprocessor and deliver 

PPA estimations for the specified target systems and design constraints.

• Integration, RTL simulation: The generated RTL wrapper and RISC-V CV32E40X are integrated in a test 

environment, using Questa for RTL simulation to verify functionality and timing.

RISC-V Core
CV32E40X / CVA6

CV-X-IF
eXtension
Interface

Wrapper
Coprocessor

Acceleration
Functions

Instruction
Decoder

Issue
Handler

Result HandlerRAM
(.hex)

• Automation: As part of our previous work [3], we proposed analysis 

approaches of the potential reduction of working hours when utilizing the flow. 

HLS adds an important automation step to the flow.

• PPA: The generated system’s optimization potential regarding performance, 

power, and area depend on the input algorithm and selected Custom 

Instructions. While a comprehensive PPA analysis for different use cases is 

ongoing within TRISTAN, first comparisons of accelerated systems with 

software-only solutions for an AES-128 algorithm suggest

• a cycle count reduction of around 65% for the CV32E40X.

• an area score of minimal impact of around 1000 compared to about 30000 

for the CVA6.

• CI Selection: In future work, we plan to automate algorithm analysis and CI 

selection, which are, up to now, manually performed by the designer.

• High-level to RTL: HLS supports synthesis of RTL designs (e.g., in VHDL or 

Verilog) from high-level description languages (e.g., C, C++, or SystemC) [1].

• Verification and Validation: Using bit-accurate 

data types in the high-level language ensures that computations match the 

synthesized RTL bit-for-bit, enabling partial validation of the algorithm in the 

high-level description and creation of expected results for the RTL verification.

• Architecture Exploration: HLS 

enables the evaluation of 

multiple RTL variants based on 

one high-level description, 

enhancing productivity and 

reducing manual coding errors.

HLS

C++ SystemC

ASIC FPGA eFPGA

Fmax

TargetLIBS

RTL Simulation

HW/SW Partitioning

CI Selection, HLS Adaption

GCC Catapult HLS

C/C++ SW

Binary RTL Coprocessor

RISC-V Core

C/C++ Algorithm

C/C++ Acc. Fct.

manually 
done by 
designer

flow-
assisted

Results and Future Work

[1] Catapult C++/SystemC Synthesis. Siemens. Accessed: March, 2025. [Online]. 

URL: https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-

cplus/.

[2] CORE-V eXtension Interface. OpenHW Group, 2021. 

URL: https://docs.openhwgroup.org/projects/openhw-group-core-v-xif.

[3] F. Egert et al. “A Methodology for Automating the Integration of User-Defined 

Instructions into RISC-V Systems based on the CV-X-IF Interface”. In: RISC-V 

Summit Europe 2024. 2024. 

URL: https://riscv-europe.org/summit/2024/media/proceedings/posters/

17_poster.pdf.

References

Acknowledgements

The TRISTAN project, nr. 101095947 is supported by Chips Joint 

Undertaking (CHIPS-JU) and its members and including top-up funding 

by the Austrian Research Promotion Agency (FFG) and the program 

"ICT of the Future" of the Austrian Federal Ministry for Climate Action, 

Environment, Energy, Mobility, Innovation and Technology (BMK).TRISTAN

https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif
https://riscv-europe.org/summit/2024/media/proceedings/posters/17_poster.pdf
https://riscv-europe.org/summit/2024/media/proceedings/posters/17_poster.pdf

	Folie 1

