LENS5: an Out-Of-Order, Modular,
Edge-Oriented RISC-V CPU

Vincenzo Petrolo, Flavia Guella, Michele Caon, Guido Masera, and Maurizio Martina

{vincenzo.petrolo,flavia.guella,michele.caon,guido.masera,maurizio.martina}@polito.it

VLSI Lab, Politecnico di Torino

Abstract

Data-driven workloads expose the limits of traditional embedded systems, driving the shift toward heterogeneous
Systems on Chip (SoCs) that combine Central Processing Unit (CPU) versatility with accelerator efficiency.
However, optimizing scheduling and resource usage at compile time remains challenging. This work presents
LENS5, a 64-bit RISC-V processor with a modular Out-of-Order (Oo0O) execution pipeline designed to leverage
Instruction-Level Parallelism. By efficiently handling dependencies and masking latency, LEN5 improves
performance achieving over 20% higher Instructions Per Cycle (IPC) than in-order designs and up to 20%
frequency boost compared to a edge-oriented CPU. Additionally, its 64-bit Instruction Set Architecture (ISA)
reduces the instruction count for precision-sensitive workloads by up to 2.4x.

Introduction

In recent years, the shift towards data-driven work-
loads has emphasized the limitations of traditional Von
Neumann architecture. Data-driven algorithms and
Moore’s Law’s slowdown require moving computation
closer to data sources. Heterogeneous embedded SoCs
tackle edge computing challenges by offloading tasks
to memory-mapped accelerators, boosting speed and
efficiency over CPUs. but requiring specialized soft-
ware and ad-hoc scheduling. However, variable latency
offloaded instructions complicate CPU stall mitigation.
This work presents LEN5, a highly configurable, modu-
lar 64-bit RISC-V CPU featuring in-order issue, OoO
execution and OoO commit. The main features of
LENS5 architecture are:

e Modular core infrastructure for easy configuration
and extension.

e Efficient latency masking and dependency han-
dling to ensure high utilization.

Preliminary Embench results show LEN5 ’s advan-
tages but highlight limitations with complex work-
loads. LEN5 improves clock frequency at a moderate
area cost, making it suitable for edge-oriented SoCs.

CPU microarchitecture

LENS5 microarchitecture (Figure 1) employs branch
prediction, speculative OoO execution, and OoO com-
mit. LEN5 ’s minimal setup supports the RV64I base
ISA and Zicsr extension, with the option to enable
M, F and D extensions.

RISC-V Summit Europe, Paris, 12-15th May 2025

Backend

Fetch Stage

Common Data Bus

System Bus

Figure 1: Block diagram of the LENS5 microprocessor.

Instruction Fetch A gshare predictor and Branch
Target Buffer update the Program Counter (PC) for
fetched branches and jumps, reducing misprediction
penalties. Instructions enter an Issue Queue (IQ) be-
fore decoding and dispatch. On mispredictions, the
fetch unit updates the PC and repopulates the 1Q
while the backend completes prior instructions.

Instruction Execution LENS5 is based on Toma-
sulo’s scheduling for OoO execution. Decoded instruc-
tions enter a Reservation Station (RS) inside the tar-
get Execution Unit (EU) and wait in the ReOrder
Buffer (ROB) for commit. Operands come from the
Common Data Bus (CDB), ROB, or register file. If
unavailable at dispatch, instructions wait in the RS
until execution completes, allowing OoO scheduling.
Results broadcast via the CDB enable dependency res-
olution. Thanks to LEN5’s distributed control flow and
execution isolation, custom extensions are integrated
by extending the main instruction decoder, adding



LEN5 IPC -02 BN CV32E40P IPC -O2

s Jump (%)

B Branch %] Load [%] Store [%)] Arith [%)]

1.00 +== - - - - -

Instructions Per Cycle (IPC)
° o
FER

- - - - - F 100 -

Mo
g o
Retired Instructions Split [%]

Figure 2: Instructions Per Cycle comparison with cv32e40p over the Embench suite* (colour) and executed instruction

composition (greyscale).

*huffbench and minver did not finish on LEN5 and cv32e40p respectively.

dedicated RS, and compute engine to the backend.

Instruction Commit LEN5 ’s ROB prioritizes old-
est instruction commits but allows OoO commits if no
Write-After-Write (WAW) hazards exist. This allows
LEN5 to commit instructions out of program order
whenever the oldest instruction in the ROB has not
yet completed its execution. Memory operations are
handled by an OoO load buffer and in-order store
buffer, which also acts as a level-zero cache, reducing
memory accesses and improving efficiency.

Logic Synthesis

LENS5 synthesis is performed on a 65nm low power
technology node in worst-case conditions. The modu-
larity of LENbS is shown by synthesizing three config-
urations. The first variant, shown in Table 1 as Max
Perf, features a multiplier, a divider, and extends data
structures to reduce stalls and achieve high perfor-
mance while relaxing area constraints. Min Area due
to the absence of multiplier and divider is suitable for
area-constrained systems and workloads that tolerate
longer execution times. Unlike Max Perf, the Avg Perf
variant features no divider yet achieving comparable
IPC limiting the area. The maximum frequency the
core can achieve at 65 nm is 578 MHz. The obtained re-

Table 1: Area and Clock Frequency Comparison

Memory Input Max Perf Avg Perf Min Area cv32e40p

Delay [ns]
Clk Freq [MHz| 490 394 578 465
Area [pm?| 0 395352 223211 200117 55908
Area [kGE] ! 271 155 139 39

TGE is the 2-input drive strength-one NAND gate equivalent area.

sults are compared with cv32e40p[1] synthesized with
the same technology and timing constraints. Every
configuration of our core has a higher clock frequency,
showing a 5% to 20 % frequency improvement. The
area overhead is estimated integrating our core into
the open-source X-HEEP Microcontroller Unit (MCU)
system [2] with 8 x 32KiB SRAM banks, synthesised
at a 4ns clock period. Replacing cv32e40p with LEN5
Maz Perf as the system CPU would cause an overall
area increase of 12.7 %.

Benchmarking Results

LEN5 IPC performance was evaluated against the 32-
bit in-order cv32e40p using the Embench suite, with
results obtained from the Max Perf variant. As shown
in Figure 2, LEN5 achieves higher IPC, especially in
benchmarks with minimal control flow complexity. No-
tably, crc32 reaches an IPC of 1.0, improving by over
20 % due to LEN5’s dynamic instruction reordering.
Similar gains appear in edn and matmult-int, benefit-
ing from efficient vector and matrix operations. How-
ever, LEN5 struggles with benchmarks featuring un-
predictable jumps, where higher misprediction penal-
ties outweigh its advantages. The 64-bit aha-mont64
benchmark demonstrates the ISA’s efficiency, retiring
2.4 x fewer instructions than its 32-bit counterpart,
with similar reductions in statemate (2 x), st (1.4 x),
and matmult-int (1.6 ).

Conclusion

This work introduces LEN5, a versatile RISC-V CPU
featuring OoO execution and commit, demonstrat-
ing notable gains in IPC compared to simpler archi-
tectures, along with increased clock frequencies. Fu-
ture work will focus on enhancing branch prediction,
supporting multiple issue capabilities, and conduct-

ing comparative analyses against leading-edge OoO
CPUs.

References

[1] Michael Gautschi et al. “Near-Threshold RISC-V Core
With DSP Extensions for Scalable IoT Endpoint Devices”.

In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (2017).

[2] Simone Machetti, Pasquale Davide Schiavone, Thomas
Christoph Miiller, et al. “X-HEEP: An Open-Source, Con-
figurable and Extendible RISC-V Microcontroller for the
Exploration of Ultra-Low-Power Edge Accelerators”. In:
arXiw preprint (2024).

RISC-V Summit Europe, Paris, 12-15th May 2025



	Introduction
	CPU microarchitecture
	Instruction Fetch
	Instruction Execution
	Instruction Commit


	Logic Synthesis
	Benchmarking Results
	Conclusion

