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Abstract

Traditional optimization techniques for higher-speed operation of CPU cores don’t work well, when targeting
FPGAs. This mostly holds with one exception: barrel processing, which is a technique that uses aggressive
pipelining together with multithreading such that any pipeline related conflicts will be resolved before a thread is
restarted again. This article will outline the advantages of barrel processing for both CPU implementations on
ASICs and FPGA targets.

Introduction

There exist many implementations of RISC-V CPUs
that have been implemented on an FPGA. In many
cases, those implementations use an FPGA more as a
prototyping target while having an ASIC implemen-
tation in mind. For instance, BOOM (the Berkeley
Out-of-Order Machine) was implemented on FPGA
and ASIC [1]. However, even using fast modern FPGA
fabrics, BOOM only achieves low microcontroller-like
speed (e.g., on AMD 7-series FPGA platforms, con-
figurations like 8 64-bit RISC-V BOOM cores, reach
clock speeds of up to 100 MHz while lower-end FPGAs
can barely reach 50 MHz. [2]).

It is important to note that these frequencies are
generally lower than those achieved in ASIC implemen-
tations, where BOOM has been demonstrated to run
at 1 GHz at 0.9V and 320 MHz at 0.6V [3], implying
an FPGA-to-ASIC speed gap of ≈10×.

Even (RISC-V) CPUs that target FPGAs as the
main target struggle to deliver high performance, when
targeting modern fast devices. For instance, the work
in [4] claims to provide a high-performance out-of-
order softcore implementation that operates at sub
100 MHz. Perhaps, one of the fastest RISC-V softcores
is GRVI operating at 375 MHz on a VU9P in a single
core configuration [5] .

The reason for this relatively poor performance is
that deep pipelining (beyond three stages) does not
perform well on FPGAs. As examined by Rose et al.
in [6], the dependencies introduced with pipelining are
expensive to be resolved when using FPGA softlogic.
For instance, register forwarding requires adding mul-
tiplexers in front of the ALU, which usually results in
a longer combinatorial path, which, in turn, backfires
the original goal of pipelining.

One notable exception to this rule is barrel process-
ing. This extended abstract explores how the barrel
processing concept can be leveraged to improve CPU
performance for both ASIC-based and FPGA-based

RISC-V implementations. This paper discusses the
use of barrel processors to be used in settings with
reconfigurable logic.

Barrel Processing

Barrel processing employs an aggressive form of
pipelining combined with multi-threading. It is is-
suing threads in a round-robin fashion; and because
each pipeline stage processes a different thread at
any given cycle, any hazards (data, control, or struc-
tural) are naturally resolved over time. Consequently,
this multi threaded pipeline design can achieve higher
throughput and more predictable performance without
requiring complex hardware-based hazard detection
and resolution mechanisms. Core benefits of barrel
processing include:

• high aggregated performance
• low cost (in term of resources)
• simple design (primarily simplified verification)
• more deterministic thread execution for real-

time systems or lockstep operation
• well-suited for ASIC and FPGA targets

The main drawback of a barrel processor is its lower
single thread performance, which, for FPGA targets,
is offset by the much higher achievable clock speed.
Moreover, it is relatively easy to prioritize one thread
as soon as it is conflict free. This usually boosts the
performance of a single thread 2− 3×.

ASIC Implementations The main overhead
introduced with barrel processing stems from a larger
registerfile required for storing the thread contexts.
The following table lists the register file cost for 1,
2, 4, 8, 16 × 32b contexts when using 2r1w macros
generated for the Skywater 130 nm process node using
OpenRAM [7]:
total words 32 64 128 256 512
area [mm2] 0.058 0.074 0.106 0.168 0.284
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As can be seen, the area for storing 16 thread contexts
is just 5× the area of a single context. This is due to
the disproportionately high cost for the SRAM sense
amplifiers that disproportionally kick in harder for
smaller RAM macros.

We implemented and taped out a 8 stage/thread
barrel processor in the open Skywater 130 process node
using OpenLane [8]. The core area is 0.194mm2 with-
out instruction or data memories (see Figure1a)). The
register file for 8 contexts is adding another 0.168mm2.
Implementing the RV32I+lr/sc+csrrs ISA, the core
could run at 40 MHz.

When extending a CPU with reconfigurable custom
instructions implemented by an eFPGA, the barrel
principle can be used to entirely hide the latency of
the otherwise slower eFPGA if custom instructions
are deeply pipelined too. This is well-supported as the
fabric offers a flip-flop after each logic element (LUT).

Figure 1b) shows a CPU with a FABulous eFPGA [9]
that can implement reconfigurable custom R and I type
instructions where the operands rs1, rs2/imm and the
result rd are directly connected to the fabric. Opposed
to [10], where reconfigurable instructions will stall the
CPU for a programmable time, the barrel approach
can accept a new custom instruction each clock cycle
but mandates a fixed number of pipeline stages for the
execution inside the eFPGA (usually 4-8 stages).

Table 1: Comparison with related works.

OoO [4], 2019 in-order [5], 2016 Barrel [11], 2025

FPGA XC7Z020 VU9P VU9P
LUT ∼15k 320 646

BRAM 6 0.5-1** 1
ISA RV32IM RV32I+lr/sc-bshift RV32I+lr/sc+csrrs

FMAX 95.3 MHz 375 MHz 737 MHz
MIPS/LUT 0.012 0.73 [5] 1.14
∗ The work [5] reports a BRAM utilization of 4 to 8 in a cluster
of 8 cores which leads to 0.5 to 1 BRAM for a single core.

FPGA Softlogic Implementations When imple-
menting the register file of a RV32I FPGA implementa-
tion in a block RAM (BRAM), the smallest BRAM on
a Xilinx/AMD UltraScale+ FPGA can fit 16 threads.
We used this for an improved 16 stage BRISKI barrel
processor [12] implementation. The results in Ta-
ble 1 show that the barrel processor delivers fastest
instruction throughput and best MIPS/LUT density as
compared with related approaches. The achieved 737
MHz is essentially the top speed of the AMD Virtex
UltraScale+ BRAM primitives. With this, the barrel
approach delivers 1.14 MIPS per LUT. The approach
was scaled up to 1024 cores /16K threads operating at
500 MHz on a VU9P FPGA in [13] (Figure 1c)).

Figure 1: l2r.: a) Barrel Processor core with 8 pipeline
stages; b) RISC-V CPU with attached eFPGA; c) 1,024
cores (16,384 threads) Barrel system with PCIe backplane
on a VU9P FPGA running at 500 MHz.

Discussion and Conclusion

Barrel processing is a technique allowing superior ag-
gregated raw performance in multi-threaded processor
systems. In particular systems using FPGA softlogic
can benefit from the barrel approach. This holds for
both pure softlogic implementations and CPU imple-
mentations using reconfigurable custom instructions.

Future work will focus on refining thread schedul-
ing policies, developing dynamic thread-management
schemes, and integrating specialized functional units
tailored to specific application domains (e.g., signal
processing, cryptography).
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