

Enabling Reconfigurable High-Throughput RISC-V Systems through Barrel Processing.

Novel Computing Technologies Dr. -Ing Riadh Ben Abdelhamid and Prof. Dr.-Ing. Dirk Koch

- Processor core:

 - on VU9P (speed grade 2))

									<u> </u>	tps.	//8			.011	1/110	iun i	UCII							
clk																								
Hart 0 Fet	tch X	Dec	X	(ExE)	(MeM)	X	X)	(WB	X	X	X	(X	X	(Fetch		(Dec)			(ExE)	(МеМ)			w
Hart 1	Fetch	X	Dec (χ)	(ExE)	MeM		χ	(WB)	X		(X	Χ	Х	Fetch		(Dec)			(ExE)	(МеМ)		
Hart 2	X XF	=etch	Dec	X)		(ExE)	(МеМ)	Χ	X	WB		(X	Х	Х		Fetch		Dec		(\Box)	(ExE)	(MeM)	
Hart 3		X	=etch	Dec			(ExE)	МеМ	χ	X	(WB)	(χ	χ	χ			Fetch		Dec			(ExE)	Me

- (Atomic instructions subset)
- **Memory:** 4 KB/core shared I-RAM and D-RAM (+ multiple cores can share URAM)
- **Publicly available** under:

ThreadIndex[log2(N)-1:0] (from DEC Stage) ReadAddr2[4:0]

UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

- 16 physical stages)
- Some ALU operations can be implemented through DSPs.
- **Barrel Shifter** optimization (Speed target vs Area target with unified implementation).
- Hardware barriers to avoid slow LR/SC

Highest RISC-V Instruction throughput on any FPGA Implementation

	OoO [4], 2019	in-order [5], 2016	Barrel [11], 2025
FPGA	XC7Z020	VU9P	VU9P
\mathbf{LUT}	$\sim \! 15 \mathrm{k}$	320	646
BRAM	6	$0.5 - 1^{**}$	1
ISA	RV32IM	m RV32I+lr/sc-bshift	m RV32I+lr/sc+csrrs
$\mathbf{F}_{\mathbf{MAX}}$	$95.3 \mathrm{~MHz}$	$375 \mathrm{MHz}$	737 MHz
MIPS/LUT	0.012	0.73~[5]	1.14

	Jpdate of SPARK	LE	: Manycore design						
	based on 1,024 BRISKI cores (16,384								
hardware threads) @ 500 MHz									
	Baseline version :		Enhanced version:						
•	< 800K LUTs on VU9P	•	630K-800K LUTs on VU9P						
•	100% DSPs usable for	•	1,024 DSPs may be used						
	accelerators		for partial ALU						
•	@400 MHz → 400		implementation.						
	GIPS	•	@500 MHz → 5 00 GIPS						
•	High Compute	•	High Compute Density:						
	Density: ~0.5		~0.81 MIPS/LUT						
	MIPS/LUT		Includes a PCIe host						
•	Includes a PCIe host interface.		interface. Backplane bus @500MHz						