
RISC-V Summit Europe, Paris, 12-15th May 2025 1

FGMT-RiscV: A fine grained multi threading processor for

FPGA systems
Bernhard Lang

1 ∗

1Faculty of Engineering and Computer Science, Osnabrück University of Applied Sciences

Abstract

A fine-grained multi-threaded processor designed for FPGA applications is presented. Its heart is a pro-

cessing pipeline which is able to process multiple instruction streams, each of which is represented by a thread

token containing a program counter and a thread identifier which selects the related register set. Thread to-

kens enter the pipeline and are emitted at the output with modified program counter. Instruction and data

memories are accessed via streaming interfaces at the side of the pipeline. Inside the processor the thread to-

kens circulate in a closed ring formed by the processing pipeline, thread handling infrastructure and a token

fifo. This ring enables monitoring and manipulation of thread tokens and provides resources for connecting

high-level debuggers. Interrupts are handled by threads that execute a wfi instruction that routes its token to a

wait stage of the interrupt controller. As soon as an interrupt occurs, the token is restarted without delay and

the thread can handle the interrupt event. An example system even suited for small FPGAs consists of the pro-

cessor, block ram, Wishbone bus and some peripherals. Programming and debugging the system is compara-

ble to the typical software development for embedded systems. The usual GCC compiler suite is used as the

programming environment. However, instead of defining interrupt handlers, here related threads are defined

and started.

Introduction

This paper presents a special RiscV [1,2] variant, a fine-

grained multi-threaded processor, which is referred to as

FGMT-RiscV in the sequel. Its heart is a ramified Pro-

cessing Pipeline with the usual stages: instruction fetch,

operands fetch, instruction execution and result store. It is

realized as an AXI streaming pipeline [3], which inherently

controls the flow of data through the individual stages.

The program counter is fed in at the input of the pipeline

and the modified program counter is emitted at the output.

The instruction and data memories are accessed via stream-

ing busses on the side of the pipeline. The number of pipe-

line stages is not fixed; it can be adapted to meet timing

specifications by inserting AXI-streaming synchronization

components.

The pipeline can handle several threads, each with its

own program counter and register set. The program counter

together with a thread identifier form a token which repre-

sents the associated thread. Typical FPGA block RAMs (4–

32 kbit) can accommodate 4 to 32 RiscV register banks; if

more threads are required, multiple block RAMs are

needed.

In the FGMT-RiscV, the Processing Pipeline is combined

with infrastructure (thread launching, monitoring, interrupt

and error handling, etc.) and a Token Fifo to form a closed

ring in which the thread tokens circulate. The ring incorpo-

rates components for manipulating the token stream includ-

* Corresponding author: B.Lang@hs-osnabrueck.de

ing debug functionality to enable source-level debugging in

the system.

A small system consisting of FGMT-RiscV, block RAM,

Wishbone bus [6], GPIO, Timer and UART has been de-

signed which allows high-level debugging of the proces-

sor's threads with the GNU Debugger [4] via serial inter-

face.

The Processing Pipeline

Figure 1 shows an overview of the Processing Pipeline.

Remind that all data connections in the pipeline are de-

signed as AXI streams, they always contain a Valid signal

plus Data signals in the forward direction and a Ready

signal in the backward direction.

Figure 1: FGMT processing pipeline

2 RISC-V Summit Europe, Paris, 12-15th May 2025

Thread tokens enter the processing pipeline and first

reach the Read Opcode stage in which the instruction is

read using the thread's program counter. The instruction

information is added to the thread token.

The subsequent Instruction DMUX forwards the expand-

ed tokens to the related one of the four outputs. Most in-

structions require source register values, their tokens are

passed to the Read Source Registers block. The next output

is used for special instructions (lui, auipc, jal). Finally,

tokens with ebreak instruction are forwarded to the debug-

ger output and tokens with wfi (wait for interrupt) instruc-

tion to the wfi output.

The Function DMUX further subdivides between pro-

cessing and load/store instructions. The Processing Block

currently supports the RV32I instruction set, the Load/Store

block is able to read and write external data memory using

request/response streams.

Finally, all instructions that generate a result value are

merged with the Result MUX towards the Write Result

Register block that writes the result value to the selected

register.

Injection of commands for debugging is supported but

only indicated in the figure, and handling of errors is im-

plemented but not shown in the figure.

The Processor

Figure 2 shows the internal structure of the processor.

The main processing ring is formed by the Thread Fifo via

Processing Pipeline, Thread Filter and a MUX back to the

Thread Fifo. In this ring tokens circulate during normal

execution, with each token representing one of the inde-

pendent threads.

Figure 2: FGMT-RiscV processor

Interrupt handling is initiated by a thread that executes a

wfi instruction. The Processing Pipeline emits this token to

WFI Out, which takes it to the Interrupt Controller. There it

waits until an assigned interrupt occurs. Triggered by the

interrupt, the token leaves the controller immediately and

the thread handles the interrupt.

Threads are started using the Launcher block. At startup

this block emits the token of the initial thread; further

threads can be launched by software.

For debugging, the Thread Filter redirects the tokens of a

selected thread to the Debug Interface. Another thread

working as debug server can read the tokens of the selected

thread and gains access to its registers via inject. Finally the

server can continue the stopped thread via the Launcher.

The System

As an example, a small system consisting of the FGMT-

RiscV, some block RAMs as system memory, Wishbone

Bridge and the Wishbone peripherals GPIO, Timer and

UART is implemented in an XC7A35T FPGA device using

Digilent's BASYS3 board. Its block diagram is shown in

Figure 3. This system requires only about one fifth of the

FPGA resources.

Figure 3: FGMT example system

Programming and debugging the system is comparable to

software development for embedded systems. The GCC

compiler suite is used as programming environment. How-

ever, instead of defining interrupt handlers, now interrupt

handling threads are defined and started.

As an extra goodie, an embedded GDBServer software is

installed as thread 0, which serves GDB's RSP protocol [5]

via serial interface. It thus allows direct connection to a

development PC running the GNU Debugger [4] to debug

the processor's other threads.

References

[1] The RISC-V Instruction Set Manual Volume I, Un-

privileged Architecture, Version 20240411

[2] The RISC-V Instruction Set Manual: Volume II, Priv-

ileged Architecture, Version 20240411

[3] AMBA® 4 AXI4-Stream Protocol Specification, Ver-

sion: 1.0. ARM, 2010.

[4] Debugging with GDB, Version 17.0.50.20250122.

Free Software Foundation, Inc., 2024.

[5] Implementing a Remote Stub: Chapter 20.5 in De-

bugging with GDB, Version 17.0.50.20250122. Free

Software Foundation, Inc., 2024.

[6] WISHBONE System-on-Chip (SoC) Interconnection

Architecture for Portable IP Cores, Revision: B.3.

opencores.org, 2002.

