
Register
Files

M
U

X

Data
Memory

Instruction
Memory

Register
Files

Instruction fetch

Register read

Execute

Register write

Load/Storeau
ip

c,

lu
i,

ja
l

Register
Files

Peripherals

Launch

PC0 0

PC2 2

PC1 1

PC4 4

PC3 3

• First thread is launched by PowerOn, it can launch further threads by software.
• Program counter value is changed in the pipeline to match the instruction.
• Each thread has its own register set.
• RiscV is well suited for this approach because its pipeline is context free.

Contact:

Prof. Dr.-Ing. Bernhard Lang

Hochschule Osnabrück, University of Applied Sciences, Faculty of Engineering and Computer Science

FGMT-RiscV:

A fine grained multi threading processor for FPGA systems

The Idea: Processor without a program counter register. Tokens
formed by a program counter value (PC) and a thread number
(ThNo) circulate through the instruction pipeline:

B.Lang@hs-osnabrueck.de +49 / 541 / 969-2193

Multi Threading: Tokens of multiple threads circulate through the
pipeline stages:

• The stages are modeled as an AXI streaming pipeline, so the throughputs of the
interleaved threads are automatically synchronized with each other.

Register
Files

Instruction fetch

Register read

Execute

Register write

Load/Store

PCThNo ThNo

PCThNo ThNo fkt rs1 rs2 rd

PCThNo ThNo fkt rs1V rs2V rd

PCThNo ThNo rdVrd

PCThNo ThNo

Register
Files

Data
Memory

Peripherals

Instruction
Memory

Register
Files

Token flow through the pipeline: The tokens are first expanded,
then modified and finally reduced back to PC and thread number:

• Instruction fetch adds instruction information to the input token.
• Register read replaces source register addresses to source values.
• Execute and Load/Store determine a result value from the source.
• Register write stores the result value back into the destination register.

Interrupts and Debugging: wfi and ebreak related tokens are
redirected to special pipeline paths

for more info
and animation
see here

Register
Files

Instruction fetch

M
U

X

Register read

Execute

Register write

Load/Store Data
Memory

Peripherals

Instruction
Memory

w
fi

eb
re

ak

au
ip

c,
lu

i,
ja

l

Register
Files

Debug
Interface

Fifo

Interrupt
Control

wfi: wait for interrupt
ebreak: environment breakpoint

interrupt
requests

Register
Files

Launch

• ebreak tokens flow to a debug interface and are handled by a debug server.
• wfi tokens wait in an interrupt control block for relaunch by an interrupt.

Software: Programming the FGMT-System is similar to
programming interrupt-controlled embedded systems. For real
time processing, no software scheduler is required if the
maximum number of hardware threads configured for this FGMT-
Processor is sufficient.

Interrupt handling: Instead of interrupt handlers, individual
threads handle interrupt events. Such a thread executes a wfi
instruction which redirects its token to the interrupt controller.
There it waits until an interrupt request occurs. Then the
controller immediately relaunches the waiting thread so that it
can handle the interrupt without delay.
 Code snippets:
void Thread3(void) { // Normal processing

 ... // Thread3 initializations

 while (1) {

 ... // Thread3 loop

 }

}

unsigned int Thread3_Stack[TH3SSIZE]; // Stack for Thread3

void Thread2(void) { // Interrupt handling

 ... // Thread2 initializations

 while(1) {

 asm ("wfi"); // Let thread 2 wait for Interrupt

 ... // Interrupt Handling

 }

}

unsigned int Thread2_Stack[TH2SSIZE]; // Stack for Thread2

void riscv_Launch(void* pc, unsigned int thread, void* stack);

int main(void) { // Normal processing

 riscv_Launch(Thread2,0x2, Thread2_Stack); // launch thread 2

 riscv_Launch(Thread3,0x3, Thread3_Stack); // launch thread 3

 ... // main initializations

 while (1) {

 ... // main loop

 }

}

Eclipse/GCC/GDB support: For programming and debugging the
GCC compiler suite is used. A GDBServer that supports the RSP
protocol of the GNU debugger can run as thread 0 of this FGMT
system. Then a simple serial connection between the GDB and
the GDBServer allows debugging the other FGMT-RiscV threads.
For convenient operation, the Eclipse IDE can be used.

System realization: The FGMT-RiscV system is described in VHDL.
A first example implementation uses the AMD XC7A35T FPGA on
a Digilent BASYS3 board. It is operated at 50 MHz, higher speeds
are possible. The System has been configured for 16 threads and
set up with GPIO, UART, Timer and 32kBytes block memory. The
following graph shows its utilization:

Development PC

Eclipse IDE

FGMT-System

GCC GDB
(serial UART connection)

RSP protocol GDBServer
(Thread 0)

FGMT-RiscV
processor

Register
Files

M
U

X

Data
Memory

Instruction
Memory

Register
Files

PCThNo ThNo

Instruction fetch

Register read

Execute

Register write

Load/Storeau
ip

c,

lu
i,

ja
l

Register
Files

Peripherals

Launch

