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Abstract

This paper presents the design and evaluation of the Bicameral Cache, a memory hierarchy for vector processors
that separates scalar and vector references into distinct partitions. This design aims to enhance vector application
performance by reducing scalar instruction interference and ensuring the continuity of vector elements. Addition-
ally, a prefetching option is included to improve performance by exploiting spatial locality in vector references.
The Cavatools simulator, supporting the RISC-V vector extension, was used for evaluation. Simulations of
eight benchmark types across various architectural vector lengths show that the proposed cache significantly
benefits sequential memory access patterns while having minimal impact on non-contiguous ones. Moreover, the
prefetching feature consistently enhances performance.

Introduction

Vectorization, which exploits data-level parallelism,
is widely used in both supercomputers and commer-
cial general-purpose processors. While it optimizes
performance by operating on multiple data simul-
taneously, its effectiveness depends on memory per-
formance, specifically the speed of data availability.
Reducing memory access latency is crucial to bridg-
ing this performance gap. Given the different access
patterns and locality of scalar and vector references,
dedicated memory solutions can significantly enhance
performance and energy efficiency in vector architec-
tures. Common strategies to exploit locality include
the memory hierarchy and prefetching.

We propose the Bicameral Cache, a segregated cache
architecture for vector processors that splits data based
on access type –vector or scalar. The design, evaluated
through simulation, seeks to boost the performance of
vector applications by leveraging the locality of vector
data. Its dedicated partitions preserve the temporal lo-
cality of each data type, preventing scalar interference
in vector data. Additionally, our proposal incorporates
a prefetching feature that fills vector cache lines with
data in advance to exploit their spatial locality.

The Bicameral Cache

The Bicameral Cache (BC) is a data cache memory
system for vector architectures composed of two differ-
ent cache structures; the Scalar Cache (SC) and the
Vector Cache (VC). Its aim is to preserve the data
locality inherent in vector computation by preventing
potential interference from the scalar one. Following

∗Corresponding author: susana.rebolledo@unican.es

a similar approach to [1], the lines in both caches
are sectorized (i.e. organized in sectors). A sector is
defined as the minimum data transfer unit between
the main memory and the caches. Its size is fixed to
the length of the SC lines. VC lines are significantly
longer, therefore composed of several sectors, to better
exploit the spatial locality on the vector data. Lines
have an tag for identification, while each sector uses
2 bits to determine the state of their data; valid (v)
and dirty (d). Both caches use LRU replacement and
a write-back policy. Despite using specific sizes for
modelling, such as 64 B sectors and up-to-8-lines write
buffers (WB), the proposed cache is size-agnostic.

Scalar Cache

The Scalar Cache (SC) stores data referenced by scalar
memory instructions. It has a set-associative structure
of 256 4-way sets which, with its 64 B-long lines (sector
size), sums up a total capacity of 64 KB. Figure 1a
shows a graphical representation of its structure. To
avoid processor stalls on store operations, the Scalar
Cache includes an additional 8-line write buffer (WB)
that stores the evicted lines with modified sectors.

Vector Cache

The Vector Cache (VC) stores data referenced by vec-
tor memory instructions in a fully-associative structure,
where each 1024 B-long line fits 16 sectors. Hence, the
8 write buffer rows to store whole cache lines contain-
ing modified sectors when evicted require significantly
larger storage capacity than in SC. To mitigate this,
the VC embeds the WB, enabling the use of its free
lines as regular cache lines. Consequently, the VC
capacity varies dynamically depending on the write
buffer occupancy. Figure 1b depicts such organization.
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(a) Scalar Cache (left) and its write buffer (right).
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(b) Vector Cache. Shadowing represents modi-
fied sectors from WB lines awaiting write-back to
memory (i.e. valid and dirty).

Figure 1: Representation of the Bicameral Cache.

Other features

We use mutual exclusivity to ensure a sector is never in
both caches simultaneously. After a miss in the cache
corresponding to the instruction type (native lookup),
the opposite cache is probed first (cross lookup) before
accessing memory. For vector data, if found in the
SC after a miss (cross hit), the sector is migrated to
VC. This migration policy prioritizes vector data in
VC to enhance vector instruction performance, allow-
ing scalar instructions to access vector data without
disrupting VC’s continuity. Valid sectors from WB
are either restored to cache if referenced again or writ-
ten back to memory if dirty. Our approach includes
memory-side prefetching to proactively fill VC lines,
reducing miss rates and improving performance.

Methodology

Baseline. We evaluate against a single conventional
cache or white cache (WC) with same capacity (128
KB), whose structure is similar to SC.
Prefetching effectiveness is compared to an ideal
version that fetches all sectors in the VC line simul-

BC: Bicameral Cache, W/O: without prefetching (red), PF:
with prefetching (blue), IDL: with ideal prefetching (green line).

Figure 2: Performance evaluation.

taneously, with the same latency as fetching a single
sector. This approach would fully populate the vector
line on the first compulsory miss, without additional
penalties.
Memory model. A simplified main memory model
was used to simulate the behaviour of the BC as part of
the memory hierarchy; a 4GB DRAM technology with
8 banks, each supporting a single open row at a time.
The modelled memory controller enqueues requests
into each bank’s queue, scheduling on a FCFS basis.
Simulator. We extend Cavatools [2], an open-source
RISC-V ISA simulator.
Vector benchmarks. We use axpy, blackscholes,
jacobi-2d, pathfinder and lavaMD from [3], and
in-house matrix-matrix (mm), matrix-vector (mv) and
sparse matrix-vector (spmv) multiplications.
Vector architecture. We evaluate on a range of
architectural vector lengths, from 128 to 4096 bits.

Results

The Bicameral Cache improves performance on stride-1
benchmarks with an average best-case speedup of 1.31x
over the baseline, which grows up to 1.57x if enabling
the prefetching (Figure 2). In addition, for non-stride-1
workloads, the performance remains mostly unchanged
with the basic configuration, yet it improves on an 11%
for the average best-case scenario with prefetching.

Overall, these results, driven by a substantial reduc-
tion in the average memory access time, represent a
significant improvement, as they are achieved with-
out additional hardware or an increase in the cache
size; just by restructuring and leveraging the available
resources to better exploit the data locality. Finally,
prefetching proved to be a succesful optimization.
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