
Computer Architecture and Technology

TheBicameralCache: asplitcachefor
RISC-Vvectorarchitectures

Susana Rebolledo Ruiz, Borja Pérez Pavón, Jose Luis Bosque Orero, Peter Hsu
{rebolledos, perezpavonb, bosquejl}@unican.es, peterhsu3333@gmail.com

SUMMARY

This poster presents the design and evaluation of
a cache organization for RISC-V vector proces-
sor that splits scalar and vector references into
two partitions with different characteristics. The
proposal, called Bicameral Cache, is specifically
aimed at improving the performance of vector ap-
plications, by suppressing the interference caused
by scalar instructions and arranging vector ele-
ments consecutively to guarantee their continuity.
An additional prefetching option to populate vector
cache lines in advance is included to improve per-
formance, by exploiting the spatial locality of vector
references.

THE BICAMERAL CACHE (BC)

The Bicameral Cache (BC) is a cache design for vector architectures, composed by 2 data caches with
different structures and geometries; the Scalar Cache (SC) and the Vector Cache (VC).

Features:
– Sectorized: lines are divided in

sectors (min. data transfer unit).
– Mutual exclusivity: cross lookup

needed after miss on native lookup.
– Vector migration: sector migrates

from SC to VC on vector cross hit.
– Vector prefetching to prefill VC

lines.

Objectives:
Preserving the locality of each type of data, preventing
scalar data from interfering with vector and vice versa.

Exploiting the spatial locality of vector accesses (long
VC lines and prefetching).

Favoring the performance of vector instructions by pri-
oritising the presence of vector data in the VC (scalar
accesses can reference them maintaining continuity).

Scalar Cache (SC)

Data referenced by scalar memory instructions
64KB, 4-way set-associative, 64 B lines (1 sec-
tor), 8-line write buffer.

Set Line Sector

0

0
1
2
3

.

.

.

.

.

.

.

.

.

255

0
1
2
3

WB0
WB1
WB2
WB3
WB4
WB5
WB6
WB7

Vector Cache (VC)

Data referenced by vector memory instructions
64KB, fully associative, 1024 B long lines (16 sec-
tors), 8-line dynamic, embedded write buffer.

Sector
Line 0 1 · · · 14 15
0 · · ·
...

...

63 · · ·
WB0 · · ·
WB1 · · ·
WB2 · · ·
WB3 · · ·
WB4 · · ·
WB5 · · ·
WB6 · · ·
WB7 · · ·

RESULTS

Speedup (Stride-1)

Avg. Mem. Access Time (Stride-1)

Speedup (Non-stride-1)

BC: Bicameral Cache, W/O: without prefetching, PF: with prefetching, IDL: with ideal prefetching.

METHODOLOGY

Evaluation criteria:
• Bicameral Cache performance compared to

white cache (WC); a conventional scalar cache
with the same organization as the Scalar Cache
in BC, but double the capacity.

• Prefetching effectiveness compared to an
ideal version that provides maximum coverage
by completely filling, with no extra penalty, the
whole VC line on the first compulsory miss that
fetches a sector from memory.

Modelled arquitecture
CPU RISC-V single-core in-order

vector processor
DRAM 4 GB DDR

RAS-CAS-PRE (11-11-28 cycles)
Row-Bank-Column (15-8-3 bits)
8 banks, 1 working at a time

Bus 2 x 256 bit

Implementation on Cavatools [1], an open-source
RISC-V ISA simulator running on a x86 Linux sys-
tem. Extended to support event-driven ex ecution,
to enable the modelling of timing constraints re-
lated to memory accesses.

Benchmark Input size
axpy [2] 2048 KB
blackscholes [2] 512 opt.
jacobi-2d [2] 32 el.
pathfinder [2] 1024x128 el.
mv 4096x4096 el.

mv: matrix-vector multiplication, opt.: options, el.: elements.

Architectural VLENs: {256, 512, 1024, 2048} bits.

CONCLUSIONS

The Bicameral Cache improves performance on
stride-1 benchmarks. The average best-case
speedup is 1.31x over the baseline, and up to
1.57x if prefetching is enabled. For non-stride-
1 workloads, performance remains mostly un-
changed with the base configuration, improving by
11% with prefetching.
These results are driven by a substantial reduc-
tion in the average memory access time and are
achieved just by restructuring the available re-
sources to better exploit locality. Finally, prefetch-
ing proved to be a succesful optimization.

REFERENCES

[1] P. Hsu, Cavatools, GitHub.
[2] C. Ramírez et al., “A RISC-V simulator and benchmark suite for designing

and evaluating vector architectures,” ACM Trans. Archit. Code Optim.,
vol. 17, no. 4, Nov. 2020, ISSN: 1544-3566.

ACKNOWLEDGEMENTS

This work has been funded by MICIU/AEI/10.13039/501100011033 together with
FEDER, UE under project PID2022-136454NB-C21 and grant PREP2022-000053,
and with EU/NextGenerationEU/PRTR under project TED2021-131176B-I00.


