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Abstract

To satisfy automotive safety and security requirements, memory protection mechanisms are an essential
component of automotive microcontrollers (MCU). In today’s available systems, either a fully physical address-
based protection is implemented utilizing a memory protection unit, or a memory management unit takes care
of memory protection while also mapping virtual addresses to physical addresses. In this work, we showcase
an extension to merge benefits from both systems to the current hPMP proposal, in order to address both
requirements from Software Defined Vehicles (SDV) and realtime-applications.

Introduction

In automotive compute systems, the aspect of mem-
ory protection plays a distinctly important role for
satisfying safety and security requirements. From a
type-classification perspective, we distinguish mech-
anisms employing physical memory-only vs. virtual
memory-based systems. The latter applying any kind
of translation, i.e. effective addresses are ‘mapped’ to
physical addresses based on a certain rule-set. Ap-
plying a selective set-based strategy, large physical
memories can be addressed by virtual address ranges.
In virtual memory-based systems, typically transla-
tion is performed page-based, i.e. blocks of predefined
size (and located at certain physical addresses) get a
virtual address assigned, and can consequently form
contiguous (or non-contiguous) address maps though
the individual blocks might physically scattered [1].
Such approach implies the need for a look-up mecha-
nism, which is invoked upon every access; consequently,
latency is induced to the system. In order to mitigate
this effect, caching strategies can be applied which
avoids potentially costly multi-stage lookups (also re-
ferred as table-lookups). While the caching increases
performance of lookup on average, it becomes an ad-
ditional burden when trying to analyze worst-case
timings/boundaries due to the induced dependency on
execution history.

Requirements for Realtime
virtualization

In order to leverage the benefits of virtual memory for
automotive applications with realtime-requirements,
a solution is mandated which provides an address-
translation feature minimizing additional complexity
introduced to analysis of time-boundaries. (Note: The
authors acknowledge that usage of virtualization of
every manner adds complexity over purely physical
solutions, yet at the benefit of reduced hardware cost.)

Furthermore, the feature should be transparent to ap-
plications/setups for which virtual addressing is not
required, i.e. change of the programming model of
the standard memory protection unit (case of explicit
protection) shall be avoided. Finally, impact to mem-
ory access timing needs to be avoided, especially when
considering systems using fast local memories.

For our extension we assume the following model: H-
extension w/o MMU (’Svbare’) (see [2]) using hPMP
(unified model) + vSPMP (see proposal in [3]). Ad-
dress translation is only performed by hPMP, i.e. both
guest- and user-code operate on guest physical ad-
dresses employing explicit protection for separation
of VS and VU. Consequently, usage of the extension
requires a modification to baseline-hypervisor, which
manages the translation ruleset.

Configuration model

Figure 1 a) shows an exemplary address map (e.g. as-
sumed for an embedded MCU) that includes regions
for closely coupled memory (CCM) that hold instruc-
tions (I) and data (D). For storing program code and
static data, a nonvolatile memory (NVM) region is
considered. Furthermore, the MCU can include vari-
ous different SRAM regions which can be utilized to
store data during execution. A dedicated segment (e.g.
placed at the top of the address space) is utilized for
peripheral access. Figure 1 b) illustrates a minimalistic
example of two VMs being managed by a hypervisor
(HV). Considered are dedicated sections in DCCM
used as stack, code regions in the NVM range and two
global data regions scattered across available SRAM.

Based on the exemplary defined memory map, our
target-configuration of hPMP is employing pairs of
pmpaddr -registers, which have defined matching-mode
OFF and TOR in pmpcfg, respectively. The pmpaddr -
pairs define start- and end address of a protection re-
gion and permissions from pmprange mapping to TOR
are considered. During reconfiguration, we consider
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Figure 1: a) Exemplary memory map of a microncon-
troller, b) Perspective of a hypervisor, c) Address redirection
of hPMP

respective ranges to be disabled by using the pmp-
switch-register. We note that hPMP-implementations
might be restricted to the OFF-TOR case (effectively
only supporting A=0 and A=0,1 for even- and odd-
numbered cfgs, respectively). We note that such sce-
nario is due to requirements for dynamic reconfigura-
tion and support of non-continuous address maps with
no restriction over an implementation supporting all
specified values for A.

The targeted permission model reads as follows:
To all regions for the hypervsor VM-access is disal-
lowed, protecting the HV from unintended modifica-
tion and/or elevation of privilege. The VM-regions are
configured with RW/RX for data and code-related re-
gions, respectively. Considering the whitelisting-logic
applied in the unified-model of sPMP for VS/VU, this
requires rules with S=0 being used. Via hpmpswitch
register, the HV will disable regions of all other VMs
before scheduling next distinct VM (its regions are
activated accordingly). The HV-execution itself is pro-
tected (e.g. to mitigate effects resulting from random
hardware-faults) by dedicated ranges with RW/RX,
yet using rules of type S=1 (activated in spmpswitch
permanently).

Updating the hPMP configuration during VM
switch can be more or less complex, depending on
the number of implemented hPMP entries, the num-
ber of VMs running on the CPU and also the number
and placement of memory regions to be separated
for each VM. In cases where the number of needed
hPMP entries for all regions to be separated is smaller
or equal the number of implemented hPMP entries,
the update can be performed using the hpmpswitch
registers as indicated above.

hPMP extension

In this work, we introduce additional HV-CSRs named
hpmpoffsetx (where x=0-63), encoding most significant
bits in 34-bit address space of RV32. When executing
in V=1, each hpmpoffsetx is used to derive virtual
addresses from hpmpaddrx, considering a hit in a re-
spective entry of hPMP. Contrary when V=0, the
registers have no effect. In this sense, Guest-OS and -
applications operate on guest-physical addresses, while
HV is employing physical addressing.

In order to keep the mechanism lean, we assume
hPMP-implementations to use of OFF-TOR strategy
as described above. Then even-numbered offsets can
be hardwired ’0’, while odd-numbered hpmpoffsetx
applies to hpmpaddrx and x-1. Consequently, VMs
can be ’moved’ within virtual address space, while
resizing requires change of respective hpmpaddr.

In the following example we show a scenario where
the code section of VM1 increases its memory footprint
from 512KB to 768KB (see arrow 1 in Figure 1). This
can be the result of an update or feature extension
for the application running on this virtual machine.
As a consequence, it is required to move the image
of VM2 to have nonoverlapping address regions (see
arrow 2 in Figure 1). Instead of rebuilding/-linking the
application of VM2, we employ the proposed concept
of the hPMP to redirect all addresses of VM2 by a
fixed offset.

Conclusion

This work highlights the limitations of classical virtual
memory using a Memory Management Unit (MMU)
approach within the context of real-time and deter-
ministic systems. Through the demonstrated hpmp
extension, we introduce an address redirection fea-
ture that enables the use of virtual memory while
preserving the deterministic behavior of today’s mem-
ory protection units. We currently focus on studying
the behavior in corner cases (e.g. overlapping regions,
other matching modes, etc.), feasibility (area, power,
timing), and integration to hypervisor.
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