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Abstract

In the context of the development of adaptable nodes for the cloud-edge continuum, this work integrates a
Coarse-Grain Reconfigurable Array (CGRA) accelerator with an application-class RISC-V processor on a System
on Chip. To do so, a DMA interface is devised to provide the CGRA with its configuration data and to manage
the transfer of input and output data between the CGRA and memory, all under the control of the RISC-V CPU
via memory-mapped registers. The resulting platform is deployed on an FPGA, and its performance is evaluated
when accelerating a set of relevant tasks, both in a bare-metal environment and under a Linux operating system.
A kernel module is written for the latter, allowing the use of the CGRA accelerator from a Linuz user process.

Introduction

The cloud-edge continuum views cloud, edge, and fog
as part of a single space where tasks can be scheduled
on various devices. Edge devices in this context benefit
from application-class processors and reconfigurable
accelerators to provide the demanded interoperability,
adaptability, and local processing capability. This
work is the first step in developing an edge node for
the cloud-edge continuum.

Platform Selection

The CVAG6 was selected as a host processor for the
edge node among other open-source, application-class
RISC-V processors for the following reasons: (1) it is
written in industry-standard SystemVerilog, (2) it has
an ISA extension interface (CV-X-IF) to add custom
instructions, and (3) it has an active user community.

The CVA6-based edge node has been developed
within a minimal platform maintained by OpenHW
Group [1], including a boot ROM and a reduced set
of peripherals, all interconnected via an AXI crossbar.

This platform was selected for use in this work due
to simulation support for the Verilator open-source
simulator and existing configuration files for the KC705
FPGA development board used in this work.

The STRELA CGRA

STRELA [2] is a Coarse Grain Reconfigurable Array
(CGRA) targeted at the low-power embedded domain.
It comprises a four-by-four grid of Processing Elements
(PEs), with four input and four output ports on the
top and bottom borders. The PEs can execute inte-
ger arithmetic, logical, and comparison operations on
32-bit words, plus loops and branches. A given code
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fragment to be accelerated is mapped to a CGRA con-
figuration, by hand or architecture-specific compilers.

The STRELA CGRA was initially integrated into an
open-source, RISC-V microcontroller platform named
X-HEEP [3]. This implementation uses an on-chip
8-way interleaved memory to allow simultaneous ac-
cess by independent memory modules in the input and
output ports of the CGRA. This approach is only prac-
tical for limited on-chip memory. A bigger, external
memory is needed to run Linux.

CGRA Operation

Figure 1 shows the intended operation of the STRELA
CGRA as an accelerator in bare-metal and Linux.
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Figure 1: CGRA operation in (a) bare-metal, (b) Linuz.

CGRA configuration and input data are placed at
given addresses in system memory, and space is allo-
cated for the output data. The RISC-V CPU specifies
these memory regions and sets a stride for input data
through control-status registers (CSRs). Once a valid
configuration is loaded into the CGRA, it can process
input data and write the results back into memory.

In a bare-metal context, the CPU has direct access
to physical memory, including the CSRs. Conversely,
under Linux, it is necessary to setup a mapping be-
tween a Linux user process and a known region of
physical memory. This is done in a kernel module,
which is also responsible for accessing the CSRs while
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Table 1: CGRA speedup.

Task Bare-metal Linux X-HEEP
ReLU 8.7x 2.2x 15.4x
2D Convolution 1.1x 4.3x 18.6x

presenting a suitable interface for the user process.
Both cases maintain cache coherency by flushing
the data cache before and after the CGRA execution.

CGRA Integration in the SoC

The CGRA was integrated into the selected platform
by wrapping it in a module that includes the neces-
sary hardware for data provisioning via DMA and
for configuration and control of the accelerator. This
module connects to the AXI-4 crossbar interconnect
via a master port for DMA and a slave port for access
to the CSRs, as seen on Figure 2.
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Figure 2: CGRA integration in the CVAG6 platform.

Due to the need to perform strided memory accesses
to support specific workloads, the DMA interface does
not use consecutive burst transfers, but single beats.
Multiple outstanding transactions allow close to one
transaction per cycle, even with high access latency.
FIFOs on the CGRA’s borders are the destinations
and sources for input and output data, respectively.
These buffers reduce the CGRA’s stall cycles and are
needed to support multiple outstanding transactions.

Results and Discussion

The implemented design was evaluated with two bench-
marks selected in [2], a ReLU operation and a 2D
convolution, both in bare-metal and under Linux. The
ReLU task is performed on 32 KB of 32-bit words and
the 2D convolution on 64x64 images with a 3x3 kernel.
Table 1 shows the obtained speedup with the aid of
the CGRA with respect to a pure software solution.
Execution time measurements are detailed in Fig-
ure 3 for a ReLU task under Linux. The CGRA time
is divided into execution, configuration loading, and
setup of the CSRs. Under Linux, overheads not present
in bare-metal are included, such as system calls to ac-
cess the kernel module and memory copy operations
to and from the shared RAM buffer. In the case of
Figure 3, the latter dominate the total execution time.
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Figure 3: Execution time of the ReLU task under Linuz.

Notably, the software implementations of the ReLU
and 2D convolutions are up to five times slower un-
der Linux than in bare-metal. This overhead can be
attributed to the Memory Management Unit (MMU)
being enabled for address translation, though its mis-
match with the 15-30 % overhead mentioned in the
literature [4] remains to be investigated.

In bare-metal, the CVA6 STRELA implementation
provides 1.7x and 17x less speedup than the X-HEEP
implementation for the ReLU and 2D convolution
tasks. Although the two implementations are not di-
rectly comparable due to the different nature of the
host processors (application class and microcontroller
class), it is clear that the memory access bandwidth,
using a single master port for DMA, is limiting the
performance of the CGRA accelerator in the CVA6 im-
plementation. This results in not taking full advantage
of the parallel processing capability of the CGRA.

Further work may involve an interleaved accelerator
cache to speed up memory access, and configuring the
CGRA with custom instructions instead of CSRs.

The reader is referred to [5] for more details on this
work.
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