
RISC-V Summit Europe, Paris, 12-15th May 2025 1

Towards an Industrial-Grade Open-Source FPU for RISC-V

Vector Processors
Enis Mustafa*, Michael Platzer*, Domenic Wüthrich* and Florian Zaruba*

Axelera AI

Abstract

Hardware floating-point units (FPUs) are crucial for HPC, ML, and embedded applications, yet no stand-alone RISC-V FPU

fully supports vector extensions. We have enhanced CVFPU into a production-ready solution by optimizing timing and power

(31% leakage reduction, up to 48% peak power savings), adding vfrec7/vfrsqrt and symmetrical widening adds, and improving

verification by fixing seven bugs. These contributions make CVFPU a more viable choice for performance-critical applications

while strengthening the overall open-source RISC-V ecosystem.

Introduction

The rise of RISC-V as an open Instruction Set Architecture

(ISA) has driven innovation in hardware design. While

open-source software is widely adopted, open-source

hardware remains niche, with limited commercial uptake.

Adopting fully open-source processor cores is challenging

due to the high development cost and the reluctance of

companies to share their work. Beyond Register Transfer

Level (RTL) code, full processor integration requires

extensive verification and EDA tooling, areas where open-

source alternatives are still developing. As a result, academic

institutions lead much of the open-source hardware work,

though often without commercial intent.

However, while full core designs remain difficult to open-

source, sub-components like execution units offer practical

opportunities. Open-source hardware components benefit

smaller companies by providing well-validated designs to

build upon.

This report presents a case study on how Axelera AI

enhanced an open-source floating-point unit (CVFPU,

formerly FPnew) [1] and integrated it into an ultra-wide

RISC-V vector processor.

Contributions

CVFPU is an open-source, highly parameterizable multi-

format floating-point unit (FPU) used in several RISC-V

cores, including the popular CVA6 [2]. It supports SIMD

operations, allowing multiple operands to be processed

simultaneously, making it well-suited for vector workloads.

However, we identified several gaps in its support for the

70+ vector floating-point instructions in the RISC-V V

extension. Key missing features included symmetrical

widening addition and LUT functions, which we

implemented. Additionally, large-scale vector processing

places extreme timing pressure on the fused multiply-add

(FMA) block, particularly without automatic retiming. To

address this, we introduced parallel summation with a

leading zero anticipator to improve timing for strict cycle

constraints (see Figure 1).

* All authors contributed equally to this work.

Furthermore, some operations natively supported by

CVFPU but less used in scalar RISC-V - such as widening

and narrowing - had undergone limited verification. In our

work, we discovered and fixed seven hardware bugs, all of

which have been upstreamed.

This report presents our modifications, along with a

detailed analysis of power, area, and timing, demonstrating

how open-source hardware can be extended to benefit the

broader RISC-V community.

CVFPU already supported an asymmetric widening add

operation, where one narrow operand and one wide operand

are added to produce a wide result. To support RISC-V V

extension, a symmetric widening add, where two narrow

operands are added to form a wide result, is required.

Figure 1: Our contributions (highlighted in red) to the

FMA Block of CVFPU. The previous design had the

summation, the conditional negation, and the Leading

Zero Count (LZC) in sequence. With our changes, these

three operations are done in parallel, with a Leading

Zero Anticipator (LZA) replacing the LZC.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

Symmetric Widening Add

Fortunately, the flexible design of CVFPU allowed us to

add support for such a symmetric widening add with very

little overhead, leveraging the existing shifting logic for the

mantissa of the second addend to perform the proper pre-

widening.

Improvements to the FMA data path

The long data path and high complexity of the FMA block

create timing issues, worsened by parallel instantiations of

multiple CVFPU units. Hence, we attempted to shorten the

length of paths through this block.

Previously, the FMA multiplied the mantissa of the two

multiplicands, then added the product to the shifted mantissa

of the addend. Under certain conditions, the resulting sum

needs to be negated, which was done in a third step. Finally,

the result was normalized by counting the leading zeroes of

the result mantissa and shifting it accordingly.

We improved upon this design by performing three of

these four operations in parallel, rather than having all of

them in sequence. A negated sum is computed in parallel

with the positive sum, avoiding the need for a separate

negation step. A leading zero anticipator (LZA), which

anticipates the leading zero count of the sum based on the

addends, replaces the LZC on the result.

Vector Support for RISC-V DV

RISC-V DV† is a popular random instruction generator,

designed to provide extensive coverage of the RISC-V base

instruction set. However, it currently lacks support for the

latest RISC-V Vector ISA (version 1.0). To address this gap,

we contributed an updated implementation that ensures

compliance with the most recent specification.

By leveraging RISC-V DV with our extended vector ISA

support, we successfully identified and resolved seven bugs

in the floating-point unit (FPU), all of which have been fixed

and upstreamed to benefit the broader RISC-V community.

Evaluation

For the evaluation, we physically-aware synthesized the

CVFPU with and without the proposed changes in a 5nm

process node using the official Process Design Kit (PDK)

and standard cell libraries. We verified the added features

and bug fixes using our RISC-V DV implementation. The

CVFPU was configured as in the default CVA6 setup, with

three pipeline stages through the FMA, but set to merged unit

mode. For our experiments the synthesis was constrained

with an input/output delay of 100ps and a setup clock

uncertainty of 5% of the cycle period.

We ran two experiments: one with fixed pipeline stages

and another with retiming enabled, allowing the synthesizer

more flexibility in balancing the stages. In both cases,

physical-aware synthesis was performed for the original

† https://github.com/chipsalliance/riscv-dv

design (Original) and the enhanced design (LZA). The first

key observation is that both the Original and LZA designs

perform significantly better when retiming is enabled.

As shown in Figure 2, the LZA-enhanced design exhibits

a more moderate increase in area for both cases, indicating

that the design is under less pressure and that the

enhancements effectively improve timing.

For the retimed case, we also ran a power simulation for

both designs, showing a reduction in leakage power of over

30%, from 2.36mW (Original) to 1.79mW (LZA). This

reduction is further reflected in the Vt mix, where the usage

of low-Vt cells decreases from 27% to 20%, with the

remainder being regular-Vt cells.

For dynamic power simulation, we evaluated the design

using mixed arithmetic operations over a 2000ns period in a

stand-alone testbench. We dumped toggle activity and back-

annotated 75% of it into Fusion Compiler for power

estimation. The results show an average power reduction of

7% over the entire estimation period and up to a 48%

reduction in peak power.

Figure 2: Area vs. Timing plot for the original design

and the LZA enhanced design (with retiming).

Related Work and Conclusion

Several open-source FPUs exist, such as Rocket’s hard-

float and Xiangshan’s Fudian (both in Chisel), which pose

integration challenges in Verilog-based ASIC flows. The

Walley FPU, while well-documented with a solid

architecture, is less parameterizable than CVFPU.

Our work advances CVFPU from a research prototype to a

production-ready IP, showcasing the potential of open-

source hardware. To sustain progress, expanding on

maintainers and investing in shared CI/regression

infrastructure will be key to fostering a mature open-source

IP ecosystem.

References

[1] Mach, Stefan, et al. "FPnew: An open-source multiformat floating-point

unit architecture for energy-proportional transprecision computing." IEEE

Transactions on Very Large Scale Integration Systems 29.4 (2020): 774-787.

[2] Zaruba, Florian, and Luca Benini. "The cost of application-class

processing: Energy and performance analysis of a Linux-ready 1.7-GHz 64-bit

RISC-V core in 22-nm FDSOI technology." IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 27.11 (2019): 2629-2640.

[3] Asanovic, Krste, et al. "The rocket chip generator." EECS Department,

University of California, Berkeley. Rep. UCB/EECS-2016-17 4 (2016): 6-2.

