
Evaluating SYCL Support on RISC-V Multicore
Architectures: A First Approach

Enrique de la Calle1, Carlos García 1 ∗

1ArTECs Research Group. Facultad Informática.
Universidad Complutense de Madrid (Spain)

Abstract

The increasing adoption of RISC-V architectures calls for the development of a robust parallel programming
infrastructure. However, the feasibility of SYCL on RISC-V multicore systems remains largely unexplored. This
ongoing study evaluates the compatibility and performance of multiple open-source SYCL implementations on
RISC-V multicore architectures. Preliminary performance and compatibility testing using the SYCL-Bench suite
showed that most benchmarks have been successfully executed on RISC-V multicore architectures.

Introduction

The demand for higher performance, energy efficiency,
and scalability has driven advancements in computer
architecture and parallel computing, further acceler-
ated by open-source hardware and royalty-free models.
In this landscape, RISC-V has emerged as a viable
alternative to proprietary ISAs.

Alongside hardware advancements, the parallel pro-
gramming landscape has evolved with a growing em-
phasis on open-source solutions for heterogeneous
computing. The Unified Acceleration (UXL) Foun-
dation1, launched in September 2023, extends oneAPI,
an open-source framework for cross-architecture com-
puting. Several SYCL implementations have emerged,
including AdaptiveCpp [1] (Acpp, formerly hipSYCL)
and Data Parallel C++ (DPC++), enabling high-
performance, portable execution across CPUs, GPUs,
and accelerators. This extended abstract explores
SYCL support on RISC-V architectures.

Experimental Environment

Banana Pi BPI-F3 board The Banana Pi BPI-
F3 is a RISC-V development board designed for AI
and embedded applications. The board features the
SpacemiT K1 System-on-Chip (SoC), equipped with
an octa-core RISC-V processor (in-order) with 256-bit
RVV 1.0 vector support. Additionally, it also incorpo-
rates a NPU and an GPU with support OpenCL.

SYCL SYCL supports RISC-V architectures as its
main implementations rely on Clang, which has in-
cluded official RISC-V support since version 9.0. How-
ever, full compatibility requires both SYCL and its
target backends to support RISC-V. While Intel’s
OpenCL runtime is limited to x86 and x86-64, Portable

∗Corresponding author: garsanca@ucm.es
1 https://uxlfoundation.org/

OpenCL (PoCL)2 offers an alternative, providing
OpenCL support for RISC-V through a pthreads-based
implementation. Additionally, OpenMP offloading, as
facilitated by AdaptiveCpp, can serve as a viable target
backend for SYCL on RISC-V.

Benchmarks To evaluate SYCL support on RISC-V-
based architectures, the suite SYCL-Bench [2] has been
selected. Two of the three available categories have
been evaluated: (1) microbenchmarks assessing mem-
ory bandwidth, arithmetic throughput, and scheduling
latency; (2) application benchmarks spanning linear
algebra, image processing, and scientific simulations.

Some code adaptations on SYCL-Bench should be
performed to ensure RISC-V compatibility. These
changes, along with compilation scripts for result repli-
cation, are available in our public repository3.

Setup The following software versions were used for
benchmark execution:

• Host compiler: Bianbu Clang 18.1.8 (11bb4)
• AdaptiveCpp: Commit c0a69b2
• DPC++: Commit 903279c
• PoCL: Release 6.0, Commit 952bc55
• SYCL-Bench: Fork based on Commit aabfb41

Discussion

Figure 1 presents microbenchmark results for Adap-
tiveCpp with OpenMP (Acpp + OMP), AdaptiveCpp
with Portable OpenCL (Acpp + PoCL), and Intel
DPC++ with Portable OpenCL (DPC++ + PoCL).
Notable performance disparities at lower-level opera-
tions across implementations and backends are evident,
particularly the bandwidth slowdown in Acpp + PoCL,
consistent with prior observations [2].

2 PoCL: https://github.com/pocl/pocl
3 https://github.com/101001000/sycl-bench

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:garsanca@ucm.es
https://uxlfoundation.org/
https://github.com/pocl/pocl
https://github.com/101001000/sycl-bench


1D
H

2D
C

2D
H

2D
C

3D
H

2D
C

1D
D

2H
C

2D
D

2H
C

3D
D

2H
C

1D
H

2D
S

2D
H

2D
S

3D
H

2D
S

1D
D

2H
S

2D
D

2H
S

3D
D

2H
S

0

5

10

E
xe

cu
ti

on
ti

m
e

(s
)

Host/Device Bandwidth

Acpp OMP
Acpp PoCL

DPC++ PoCL

in
t3

2

fp
32

0.002

E
xe

cu
ti

on
ti

m
e

(s
)

Arithmetic

fp
32

1

fp
32

2

fp
32

3

1

1.5

DRAM

in
t3

2

fp
32

3

4

5

6

·10−4
Local Mem

fp
32

0.8

0.9

1

·10−3
SF

Figure 1: Microbenchmarks

More consistent results across implementations are
observed in the application benchmarks (Figure 2),
with the most notable discrepancies appearing in the
syrk and mvt benchmarks.

Execution errors Some of the benchmarks couldn’t
execute properly, being Acpp+PoCL the worst of-
fender. Such benchmarks are listed below: Hierar-
chical executions and atomics float operations failed
on Acpp + PoCL, Median failed on PoCL and Sobel
failed on DPC++

Verification errors Two benchmarks exhibited veri-
fication issues across all implementation-backend com-
binations: Molecular Dynamics and LinearRegression-
Coeff. Notably, no benchmark failed verification in one
implementation while passing in another.

Conclusions

Most of SYCL benchmark suite for parallel perfor-
mance evaluation was executed on a BPI-F3 board
equipped with a RISC-V octa-core processor. The
results revealed discrepancies across different imple-
mentations, with certain benchmarks failing to execute
on specific backends. However, only a small subset
of tests failed consistently across all available back-
ends, demonstrating the viability of executing portable
parallel code on RISC-V architectures.

As future work, further exploration is needed to en-
hance performance portability and optimize vectoriza-

G
E

M
M

LR
E

3M
M

C
O

R
R

SY
R

K

C
O

V

B
IG

C

2M
M

SY
R

K
2

G
R

A
M

S

100

101

102

E
xe

cu
ti

on
ti

m
e

(s
)

Application Benchmarks with time > 1s

A
T
A

X

G
E

SU
M

2D
C

O
N

V

M
E

D
IA

N

V
A

f

SP
N

D
f

M
V

T

SO
B

3

SO
B

5

SO
B

7

10−2

10−1

100

E
xe

cu
ti

on
ti

m
e

(s
)

Application Benchmarks with time < 1s

Figure 2: Application Benchmarks

tion techniques on RISC-V-based systems. Specifically,
AdaptiveCpp facilitates automatic vectorization in the
OpenMP backend through an LLVM pass, and addi-
tional research will focus on integrating and evaluating
the RISC-V Vector Extension (RVV) within SYCL.
Moreover, a more in-depth analysis of execution fail-
ures and verification discrepancies will be conducted,
alongside comprehensive testing of the runtime suite.
Besides, Intel provides an experimental open-source
OpenCL/Vulkan runtime for RISC-V architectures via
the OneAPI Construction Kit, making it a promising
platform for further analysis.

Acknowledgements

The research was funded by the EU and the Spanish
MINECO through grants PID2021-126576NB-I00.

References

[1] Aksel Alpay and Vincent Heuveline. “AdaptiveCpp Stdpar:
C++ Standard Parallelism Integrated Into a SYCL Com-
piler”. In: Proceedings of the 12th International Workshop
on OpenCL and SYCL. 2024, pp. 1–12.

[2] Luigi Crisci, Lorenzo Carpentieri, Peter Thoman, et al.
“SYCL-Bench 2020: Benchmarking SYCL 2020 on AMD,
Intel, and NVIDIA GPUs”. In: Proceedings of the 12th In-
ternational Workshop on OpenCL and SYCL. 2024, pp. 1–
12.

2 RISC-V Summit Europe, Paris, 12-15th May 2025


	Introduction
	Experimental Environment
	Banana Pi BPI-F3 board
	SYCL
	Benchmarks
	Setup


	Discussion
	Execution errors
	Verification errors


	Conclusions
	Acknowledgements


