
Evaluating SYCL Support on RISC-V
Multicore Architectures: A First

Approach
Enrique de la Calle Montilla, Carlos Garcı́a Sánchez

Fac. Informática, Universidad Complutense de Madrid,
28040 Madrid (Spain)

{encalle,garsanca}@ucm.es

Abstract

• The increasing adoption of RISC-V architectures calls for
the development of a robust parallel programming infras-
tructure.

• The feasibility of SYCL on RISC-V multicore systems re-
mains largely unexplored.

• This ongoing study evaluates the compatibility and per-
formance of multiple open-source SYCL implementations
on RISC-V multicore architectures.

• Preliminary performance and compatibility testing using
the SYCL-Bench suite showed that most benchmarks
have been successfully executed on RISC-V multicore
architectures.

1. Experimental Environment

1.1 Banana Pi BPI-F3 board
The Banana Pi BPI-F3 is a RISC-V development board de-
signed for AI and embedded applications. The board fea-
tures the SpacemiT K1 System-on-Chip (SoC), equipped
with an octa-core RISC-V processor (in-order) with 256-bit
RVV 1.0 vector support. Additionally, it also incorporates a
NPU and an GPU with support OpenCL.

1.2 SYCL
SYCL supports RISC-V architectures as its main implemen-
tations rely on Clang, which has included official RISC-V
support since version 9.0. However, full compatibility re-
quires both SYCL and its target backends to support RISC-
V. While Intel’s OpenCL runtime is limited to x86 and x86-
64, Portable OpenCL (PoCL)1 offers an alternative, provid-
ing OpenCL support for RISC-V through a pthreads-based
implementation. Additionally, OpenMP offloading, as facili-
tated by AdaptiveCpp, can serve as a viable target backend
for SYCL on RISC-V.

1.3 Benchmarks
To evaluate SYCL support on RISC-V-based architectures,
the suite SYCL-Bench [1] has been selected. Two of the
three available categories have been evaluated: (1) mi-
crobenchmarks assessing memory bandwidth, arithmetic
throughput, and scheduling latency; (2) application bench-
marks spanning linear algebra, image processing, and sci-
entific simulations.
Some code adaptations on SYCL-Bench should be per-
formed to ensure RISC-V compatibility. These changes,
along with compilation scripts for result replication, are
available in our public repository2.

1.4 Setup
The following software versions were used for benchmark
execution:
• Host compiler: Bianbu Clang 18.1.8 (11bb4)
• AdaptiveCpp: Commit c0a69b2
• DPC++: Commit 903279c
• PoCL: Release 6.0, Commit 952bc55
• SYCL-Bench: Fork based on Commit aabfb41

2. Discussion

Figure 1 presents microbenchmark results for AdaptiveCpp
with OpenMP (Acpp + OMP), AdaptiveCpp with Portable
OpenCL (Acpp + PoCL), and Intel DPC++ with Portable
OpenCL (DPC++ + PoCL). Notable performance disparities
at lower-level operations across implementations and back-
ends are evident, particularly the bandwidth slowdown in
Acpp + PoCL, consistent with prior observations [1].

More consistent results across implementations are ob-
served in the application benchmarks (Figure 2), with the
most notable discrepancies appearing in the syrk and mvt
benchmarks.

1D
H

2D
C

2D
H

2D
C

3D
H

2D
C

1D
D

2H
C

2D
D

2H
C

3D
D

2H
C

1D
H

2D
S

2D
H

2D
S

3D
H

2D
S

1D
D

2H
S

2D
D

2H
S

3D
D

2H
S

0

2

4

6

8

10

E
xe

cu
tio

n
tim

e
(s

)

Host/Device Bandwidth

Acpp OMP
Acpp PoCL

DPC++ PoCL
in

t3
2

fp
32

0.002

E
xe

cu
tio

n
tim

e
(s

)

Arithmetic

fp
32

1
fp

32
2

fp
32

3

0.8

1

1.2

1.4

1.6

1.8

DRAM

in
t3

2
fp

32

2.5

3

3.5

4

4.5

5

5.5

6

6.5

·10−4Local Mem
fp

32

0.8

0.85

0.9

0.95

1

·10−3SF

Figure 1: Microbenchmarks

G
E

M
M

LR
E

3M
M

C
O

R
R

S
Y

R
K

C
O

V
B

IG
C

2M
M

S
Y

R
K

2
G

R
A

M
S

100

101

102

E
xe

cu
tio

n
tim

e
(s

)

Application Benchmarks with time > 1s

AT
A

X
G

E
S

U
M

2D
C

O
N

V
M

E
D

IA
N

VA
f

S
P

N
D

f
M

V
T

S
O

B
3

S
O

B
5

S
O

B
7

10−2

10−1

100

E
xe

cu
tio

n
tim

e
(s

)

Application Benchmarks with time < 1s

Figure 2: Application Benchmarks

2.1 Execution errors
Some of the benchmarks couldn’t execute properly, be-
ing Acpp+PoCL the worst offender. Such benchmarks are
listed below: Hierarchical executions and atomics float op-
erations failed on Acpp + PoCL, Median failed on PoCL and
Sobel failed on DPC++

2.2 Verification errors
Two benchmarks exhibited verification issues across all
implementation-backend combinations: Molecular Dynam-
ics and LinearRegressionCoeff. Notably, no benchmark
failed verification in one implementation while passing in
another.

3. Conclusions

Most of SYCL benchmark suite for parallel performance
evaluation was executed on a BPI-F3 board equipped with
a RISC-V octa-core processor. The results revealed dis-
crepancies across different implementations, with certain
benchmarks failing to execute on specific backends. How-
ever, only a small subset of tests failed consistently across
all available backends, demonstrating the viability of exe-
cuting portable parallel code on RISC-V architectures.
As future work, further exploration is needed to enhance
performance portability and optimize vectorization tech-
niques on RISC-V-based systems. Specifically, Adap-
tiveCpp facilitates automatic vectorization in the OpenMP
backend through an LLVM pass, and additional research
will focus on integrating and evaluating the RISC-V Vector
Extension (RVV) within SYCL. Moreover, a more in-depth
analysis of execution failures and verification discrepan-
cies will be conducted, alongside comprehensive testing of
the runtime suite. Besides, Intel provides an experimental
open-source OpenCL/Vulkan runtime for RISC-V architec-
tures via the OneAPI Construction Kit, making it a promis-
ing platform for further analysis.

References

[1] Crisci, L., Carpentieri, L., Thoman, P., et al.: Sycl-bench
2020: Benchmarking sycl 2020 on amd, intel, and nvidia
gpus. In: Proceedings of the 12th International Work-
shop on OpenCL and SYCL. pp. 1–12 (2024)

1PoCL: https://github.com/pocl/pocl
2https://github.com/101001000/sycl-bench

Supported by the EU (FEDER), the Spanish MINECO under grants PID2021-126576NB-I00 funded by MCIN/AEI/10.13039/501100011033.


