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Abstract

• The increasing adoption of RISC-V architectures calls for
the development of a robust parallel programming infras-
tructure.

• The feasibility of SYCL on RISC-V multicore systems re-
mains largely unexplored.

• This ongoing study evaluates the compatibility and per-
formance of multiple open-source SYCL implementations
on RISC-V multicore architectures.

• Preliminary performance and compatibility testing using
the SYCL-Bench suite showed that most benchmarks
have been successfully executed on RISC-V multicore
architectures.

1. Experimental Environment

1.1 Banana Pi BPI-F3 board
The Banana Pi BPI-F3 is a RISC-V development board de-
signed for AI and embedded applications. The board fea-
tures the SpacemiT K1 System-on-Chip (SoC), equipped
with an octa-core RISC-V processor (in-order) with 256-bit
RVV 1.0 vector support. Additionally, it also incorporates a
NPU and an GPU with support OpenCL.

1.2 SYCL
SYCL supports RISC-V architectures as its main implemen-
tations rely on Clang, which has included official RISC-V
support since version 9.0. However, full compatibility re-
quires both SYCL and its target backends to support RISC-
V. While Intel’s OpenCL runtime is limited to x86 and x86-
64, Portable OpenCL (PoCL)1 offers an alternative, provid-
ing OpenCL support for RISC-V through a pthreads-based
implementation. Additionally, OpenMP offloading, as facili-
tated by AdaptiveCpp, can serve as a viable target backend
for SYCL on RISC-V.

1.3 Benchmarks
To evaluate SYCL support on RISC-V-based architectures,
the suite SYCL-Bench [1] has been selected. Two of the
three available categories have been evaluated: (1) mi-
crobenchmarks assessing memory bandwidth, arithmetic
throughput, and scheduling latency; (2) application bench-
marks spanning linear algebra, image processing, and sci-
entific simulations.
Some code adaptations on SYCL-Bench should be per-
formed to ensure RISC-V compatibility. These changes,
along with compilation scripts for result replication, are
available in our public repository2.

1.4 Setup
The following software versions were used for benchmark
execution:
• Host compiler: Bianbu Clang 18.1.8 (11bb4)
• AdaptiveCpp: Commit c0a69b2
• DPC++: Commit 903279c
• PoCL: Release 6.0, Commit 952bc55
• SYCL-Bench: Fork based on Commit aabfb41

2. Discussion

Figure 1 presents microbenchmark results for AdaptiveCpp
with OpenMP (Acpp + OMP), AdaptiveCpp with Portable
OpenCL (Acpp + PoCL), and Intel DPC++ with Portable
OpenCL (DPC++ + PoCL). Notable performance disparities
at lower-level operations across implementations and back-
ends are evident, particularly the bandwidth slowdown in
Acpp + PoCL, consistent with prior observations [1].

More consistent results across implementations are ob-
served in the application benchmarks (Figure 2), with the
most notable discrepancies appearing in the syrk and mvt
benchmarks.
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Figure 1: Microbenchmarks
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Figure 2: Application Benchmarks

2.1 Execution errors
Some of the benchmarks couldn’t execute properly, be-
ing Acpp+PoCL the worst offender. Such benchmarks are
listed below: Hierarchical executions and atomics float op-
erations failed on Acpp + PoCL, Median failed on PoCL and
Sobel failed on DPC++

2.2 Verification errors
Two benchmarks exhibited verification issues across all
implementation-backend combinations: Molecular Dynam-
ics and LinearRegressionCoeff. Notably, no benchmark
failed verification in one implementation while passing in
another.

3. Conclusions

Most of SYCL benchmark suite for parallel performance
evaluation was executed on a BPI-F3 board equipped with
a RISC-V octa-core processor. The results revealed dis-
crepancies across different implementations, with certain
benchmarks failing to execute on specific backends. How-
ever, only a small subset of tests failed consistently across
all available backends, demonstrating the viability of exe-
cuting portable parallel code on RISC-V architectures.
As future work, further exploration is needed to enhance
performance portability and optimize vectorization tech-
niques on RISC-V-based systems. Specifically, Adap-
tiveCpp facilitates automatic vectorization in the OpenMP
backend through an LLVM pass, and additional research
will focus on integrating and evaluating the RISC-V Vector
Extension (RVV) within SYCL. Moreover, a more in-depth
analysis of execution failures and verification discrepan-
cies will be conducted, alongside comprehensive testing of
the runtime suite. Besides, Intel provides an experimental
open-source OpenCL/Vulkan runtime for RISC-V architec-
tures via the OneAPI Construction Kit, making it a promis-
ing platform for further analysis.
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