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Abstract

Popular instruction set architectures have recently added new instructions to assist TLB shootdown, a software
task performed by the OS to ensure that writes to the page table are seen by all address translation caches.
RISC-V currently uses a slower traditional approach where TLB invalidation is done by broadcasting an inter-
processor interrupt (IPI) to all affected harts. The IPI sender must stall until it collects acknowledgments from
all target harts; each target hart is normally running some other software but it must take an exception to run a
trap handler that evicts the specified TLB entry or entries and sends back an acknowledgment. In this early-stage
research, we are reviewing the state-of-the-art in hardware and software techniques to accelerate TLB shootdown,
and instrumenting the Linux kernel to help develop a new RISC-V mechanism that can accelerate remote TLB
invalidations. The most promising techniques in research use a familiar hardware feature: cache coherence.

Introduction

This work describes early research that will propose
ways to accelerate TLB shootdowns in RISC-V.

Virtual Memory (VM) is an extremely important
feature that isolates programs from each other. It
improves security and reliability; memory being used
by one program can’t be seen by other programs, and
a bug in one program won’t corrupt other programs.

While VM is powerful, performance in multi-core
systems suffers from a particular inter-process interfer-
ence called “TLB shootdown” which is necessary to pre-
vent harts from using stale virtual-to-physical address
translations [1, 2]. Initiated by the OS on one hart for
certain page table changes, TLB shootdown is broad-
cast via inter-processor interrupt (IPI) to all affected
harts; each of those harts temporarily stops running
its process and flushes the modified page table en-
tries (PTE) from its address translation cache(s), also
known as translation lookaside buffer(s) (TLB). Op-
erating systems research has improved the frequency
(how often), scope (number of targeted harts), and
performance impact of TLB shootdowns.

Despite these efforts, the OS still sends more inter-
rupts than necessary because it lacks precise informa-
tion about which translations are present in each hart.
In this work, we are instrumenting the Linux kernel
on a RISC-V processor system to measure exactly how
many harts are unnecessarily included in TLB shoot-
downs. From that information, we will design new
hardware-level mechanisms enabling the OS to filter
more harts from shootdown or elide IPIs entirely.

Hardware Prior Art

A naive system flushes the TLB on every context
switch. Modern architectures, including RISC-V,
avoid this with address space identifiers (ASIDs). Each

TLB entry is tagged by the ASID that fetched it and is
used only by that ASID. This permits TLB entries to
safely persist through context switches for reuse when
their ASID resumes. Using ASIDs increases the scope
of shootdowns, but shootdowns for inactive ASIDs can
be deferred to the next context switch.

AMD, ARM and Intel have instructions to avoid
costly IPIs. AMD’s INVLPGB invalidates a range
of addresses in both local and remote TLBs. Early
Linux results with INVLPGB show good promise [3].
ARM’s TLBI is similar to INVLPGB, but performance
issues slowed adoption. Intel’s Remote Action Re-
quest (RAR) bundles remote invalidation commands
in shared memory, but is not yet in Linux.

In research, DiDi [4] uses an on-chip shared directory
to track which CPU cores share a PTE mapping. Upon
shootdown, the directory non-intrusively invalidates
all shared copies of the mapping. Both UNITD [5]
and HATRIC [6] use cache coherence instead of special
directory hardware. Upon writing to a PTE, any shar-
ing harts receive a cache coherence transaction. These
transactions search the TLB using extra hardware (a
CAM and tag bits), and more invalidations than nec-
essary are performed. To eliminate these overheads,
ATTC [7] memory maps a last-level TLB into DRAM
and allows the data cache to hold these address trans-
lations. None of these research systems have been
built into a physical system.

Software Prior Art

Deferring and batching TLB shootdowns reduces in-
terruptions by removing several entries with one inter-
rupt or context switch [8]. Reduced synchronization
results in less waiting for IPI acknowledgment, and
overlapping waiting with local invalidations improves
concurrency [9]. Additional deferred invalidation op-
portunities exist, but their safety is controversial [10].
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The current RISC-V Linux kernel uses ASIDs and
sends TLB shootdowns only to harts that have exe-
cuted the process in question. When possible, inter-
rupts are avoided by deferring shootdown to context-
switch time. Yet, this is still overspecified because (1)
any given page is unlikely to have been touched by all of
these harts, and (2) based on age, remaining harts may
or may not have evicted the mapping. Better precision
and granularity is needed — this may demand new ar-
chitectural support to expose fine-grained information
about which harts are sharing address translations.

This Work

An open question remains: What should RISC-V do?
Add remote invalidation like AMD, ARM, and Intel?
Exploit cache coherence instead? Can a new approach
be developed?

Other architectures’ remote invalidation instructions
show us that today’s shootdown IPI overheads can
be greatly reduced. However, many-core systems may
also benefit from shootdowns being addressed to only
essential harts, and this suggests a tracking mechanism
similar to cache coherence.

To start, we are instrumenting the Linux kernel for
fine-grained, per-page tracking of which harts have
actually loaded an address translation. Although we
expect significant slowdown, it will generate essential
data with real applications that will help us design
future hardware-assisted mechanisms.

Inspired by ABIS’s tracking each page using a
single bit to designate local (not shared) or global
(shared) [11], we use a bitmask to track exactly which
harts have loaded each translation. To reduce this
substantial overhead, we only track pages that have
been explicitly marked with the madvise() syscall.

Applications that unmap or reduce page permis-
sions across multiple cores, such as larger-than-memory
databases, incur TLB shootdown overhead. Even if
only one hart used and cached a given translation,
current RISC-V systems may shootdown all harts the
process has ever run on to invalidate that translation.
These spurious shootdowns are reclaimable overhead.

Instrumentation Details

Our RISC-V system uses a hardware page table walker.
To track each hart that loads a translation, we mark
user application’s madvise()’d PTEs as invalid. Then
a page fault occurs when a hart first accesses the page,
allowing us to use custom instructions to manually
load the correct address translation into the TLB and
to add the faulting hart to the sharing bitmask of that
mapping. Further accesses proceed normally. With
this, the OS can track a translation’s TLB residence
on a per-process, per-hart, and per-page basis.

The operating system is not immediately informed of
TLB evictions, but this does not cause incorrectness.
After a tracked page is evicted, an additional fault
reloads the TLB and informs the OS of the eviction.

Now that the OS knows which harts hold an address
translation, it can send shootdown interrupts to only
those harts that have actually accessed and possibly
cached that translation. This improves over the cur-
rent RISC-V Linux state-of-the art where shootdowns
may be sent to all harts that have run the process.
This most benefits multi-threaded applications where
few harts have used the translation being shot down.

Future Work

The software mechanism described above incurs page
fault overheads and may only be useful for collect-
ing data. With that data, we can best determine
whether it is valuable enough to add new hardware-
based tracking, cache coherence-based TLB invalida-
tion, or hardware-assisted broadcast TLB invalidation
similar to AMD, ARM, and Intel’s instructions. The
synchronization-reducing Svinval and Svvptc exten-
sions will be considered and appropriately integrated.
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