
What Is TLB Shootdown?
Today’s address translation caches, also known as “translation lookaside
buffers” or TLBs, are not coherent like CPU data caches are. When page
table entries (PTEs) containing active translations are changed to reduce
access, TLBs must be invalidated by the operating system to
remove cached and potentially dangerous stale translations.

Above is an example of the shootdown process. An initiator hart ① changes
the page table. Then the initiator ② sends inter-processor interrupts to all
harts that may be caching the now-stale PTEs. The interrupted harts ③ flush
their own stale cached translations and reply. After the initiator hart ④
collects all replies, it can continue with other tasks.

TLB Shootdown Works. Why Fix It?
Interrupt-based TLB shootdown flushes pipelines, pollutes caches, and
disturbs application execution. TLB invalidation is a scaling problem
as hart count increases in shared virtual memory systems.

Other architectures have adopted non-interrupting methods for remote TLB
invalidation to improve performance. AMD’s INVLPGB instruction broadcasts
a non-interrupting TLB invalidation to all harts and is now used in Linux.
ARM’s similar TLBI instruction had performance problems in important early
implementations, causing slow Linux adoption. Intel’s Remote Action
Request (RAR) approach is flexible, but its complex interface is not yet used
in upstream Linux.

Even non-interrupting TLB invalidation broadcasts still disturb execution with
synchronization, interconnect traffic, and cache probes. In Linux, some ARM
platforms perform better with interrupting shootdowns because the kernel can
filter interrupts but cannot filter broadcast invalidations.

What Should RISC-V Do?
Today’s RISC-V does not have remote TLB invalidation in the instruction set;
OpenSBI’s remote TLB invalidation uses interrupts in its implementation. The
Linux adoption pains of ARM and Intel’s non-interrupting remote TLB
invalidations show that uneven performance and complex interfaces will both
confuse maintenance and slow adoption.

• Should RISC-V include remote TLB invalidation instructions?
• Would such instructions broadcast to all harts or allow filtering?
• Change address space identifiers from hart-private to system-wide?

• How do RISC-V remote TLB invalidation instructions collect replies?
• Poll memory like Intel’s RAR?
• Synchronization instruction like RISC-V’s Svinval extension or ARM?

• Could hardware page table walkers efficiently collect and expose
translation sharing to enhance shootdown filtering in many-hart systems?

Improving RISC-V TLB Shootdown Performance
John Henry Deppe (deppe@ece.ubc.ca) and Guy Lemieux (lemieux@ece.ubc.ca)

Our PTE Sharing Study
We modify Linux to track which harts actually

cache a page table entry. This information will

improve TLB shootdown filtering.

Software-Loaded TLB

Tracks Shared PTEs
The T-Head XuanTie C920’s TLBs can be

manipulated with control and status registers

(CSRs). We mark Linux page table entries as

invalid and software-load correct translations

with CSRs upon page fault. These faults let

us maintain bitmasks that track which harts

cache each translation.

Filter TLB Shootdowns

With Tracked Sharing
Most architectures, including RISC-V, don’t

expose fine-grained information about

translation caching. A syscall like mremap()

requires shootdown interrupts for all harts

currently running that process and deferred

invalidation for harts that may still cache that

process’s translations.

Today, Linux filters TLB shootdowns with

information from process scheduling; a stale

translation won’t be found in a hart that didn’t

access that page table. Some invalidations

safely avoid interrupts by deferring until

context-switch. Our PTE-tracking bitmasks

enable additional interrupt avoidance: harts

currently running the shootdown’s process

but not caching a stale translation.

Limit Overhead By

Tracking Marked Areas
Extra page faults are performance overhead

and extra bitmasks are memory overhead. To

ameliorate these overheads, we track only

memory designated by an madvise() syscall.

Future Work
Our shootdown filtering may provide net
performance benefit to multi-threaded
applications that suffer from TLB shootdown
overhead, such as databases using mmap().

We will also use collected translation sharing
data in designing future translation coherence
mechanisms.

This work received funding

from Andes Technology.

We thank Steven Yeung for

his help and support.

Initiator Hart
Shootdown

Victim Hart 1
TLB Flush

Victim Hart 2
TLB Flush

Time

Page Table
 Change
① ②

④

③

③

	Slide 1

