
Reference

1 Politecnico di Torino, DET - Dipartimento di Elettronica e Telecomunicazioni , Turin, Italy

Alessandra Dolmeta1, Valeria Piscopo1, Maurizio Martina1, Guido Masera1

[1] https://github.com/openhwgroup/core-v-xif/tree/main
[2] https://github.com/esl-epfl/x-heep
[3] https://github.com/esl-epfl/cv32e40px

Introduction

Integration methodologies

Results

A Deep Dive into Integration Methodologies 
in RISC-V

• Three versions of KRONOS are presented. They are integrated into X-
HEEP [2], a RISC-V based microcontroller, using the CV32E40PX core
[3].

• Loosely coupled (Figure 2):
➢Memory-mapped compo-

nent, accelerating the
complete Keccak-f per-
mutation.

➢ Fifty 32-bit registers to
store the state.

➢ KRONOS called by a
dedicated driver.Figure 2. Loosely coupled approach. 

Figure 3. TIghtly coupled approach.

Figure 4. Coprocessor approach. 

• Tightly coupled (Figure 3):
➢ Leverages the CV-X-IF.
➢ RISC-V-compliant custom

instruction rol_32, ac-
celerating the bitwise ro-
tation operation. Instr-
uction called through
inline assembly.

➢ No additional register file
is used.

• Coprocessor (Figure 4):
➢ Hybrid between loosely and tightly approaches: leverages CV-X-IF

but accelerates the complete Keccak-f permutation.
➢ Three R-type custom instructions to store/load the state into the

dedicated Keccak register file and to start the permutation.
Instructions called via inline assembly.

➢ Not fully RISC-V compliant.

• In embedded systems design, the growing computational demands
have driven the integration of specialized accelerators. The
integrationmethodology can significantly affect their performance:
➢ Loosely coupled accelerators are generally memory-mapped and

operate independently, interfacing with the CPU via a system bus.
➢ Tightly coupled accelerators are integrated within the CPU

microarchitecture and directly access internal registers.
➢ Coprocessors differ by utilizing external register files.

• RISC-V’s open-source ecosystem has further advanced accelerator
research. The Core-V eXtension InterFace (CV-X-IF) [1] facilitates
tightly coupled accelerator integration without modifying the CPU
toolchain and pipeline.

• We take SHA3-384 function as a case of study to test the three
versions of KRONOS. SHA3-384 is part of the SHA-3 family, which is
based on the Keccak cryptographic permutation: evaluating SHA3-
384 directly tests the performance of KRONOS.t of the SHA-3 family, which is based on the Keccak

cryptographic permutation. Therefore, evaluating SHA3-384 directly tests the performance of our Keccak accelerator.

• Table 1 illustrates the cycle counts for executing the SHA3-384
function on X-HEEP platform using the three different methods, and
their relative speed-ups and throughput. The -O2 flag is used for
reference and accelerated simulations.

Table 1. Cycle counts – SHA3-384.

Table 2. Resource utilization (ZCU104, 50 MHz).

• Table 2 presents a comparison of the FPGA area results for the three
versions, implemented on the Zynq UltraScale+ ZCU104 board
(xczu7ev-ffvc1156-2-e). The synthesis and implementation are
performed using Xilinx Vivado, with a global clock of 50 MHz.

• The optimal trade-off between area and throughput is provided
by the tightly coupled version. The absence of a dedicated Keccak
register file results in a substantially more compact solution when
compared to the other integrationmethodologies.

• The analysis of different integration
methodologies is applied to Keccak, a pivotal
hashing standard in Post-Quantum
Cryptography (PQC): we present KRONOS, a
Keccak RISC-V Optimized eNgine for
haShing.

CV-X-IF
• The CV-X-IF interface introduces a dispatcher that enables the

integration of custom instructions without modifying the existing
core components, preserving the original decoder, ALU, and RF
(Figure 1).

Figure 1. Common tightly coupled approach (a) vs CV-X-IF (b).

https://github.com/openhwgroup/core-v-xif/tree/main
https://github.com/esl-epfl/x-heep
https://github.com/esl-epfl/cv32e40px

	Diapositiva 1

