
RISC-V ISA Extensions with Hardware
Acceleration for Hyperdimensional Computing

Rocco Martino1, Marco Angioli1, Antonello Rosato1, Marcello Barbirotta1

Abdallah Cheikh1 and Mauro Olivieri1

1Dept. of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Italy

Abstract

Hyperdimensional Computing (HDC) leverages high-dimensional distributed representations called hypervectors
(HVs) and simple arithmetic operations, making it an ideal paradigm for learning tasks on resource-constrained
devices. This work introduces the first RISC-V Instruction Set Architecture (ISA) extension specifically designed
to execute all fundamental arithmetic operations of HDC directly through dedicated instructions, which, when
appropriately combined, enable a variety of learning tasks by efficiently encoding and processing information.
This extension is coupled with a specialized hardware acceleration unit, integrated into the Klessydra-T03 RISC-V
core, to perform computations on binary HVs efficiently. The proposed solution enables a seamless trade-off
between execution time and hardware resource utilization through both synthesis-time configurability and runtime
programmability. The custom ISA extension is fully integrated into the RISC-V GCC toolchain, allowing
software developers to exploit its capabilities via intrinsic function calls. Benchmarking on an FPGA platform
demonstrates significant performance improvements across a wide range of HDC tasks, from basic arithmetic
operations to real-world classification problems.

Introduction

Hyperdimensional Computing (HDC), also known
as Vector Symbolic Architectures (VSA), is a sym-
bolic computing paradigm that represents information
through distributed high-dimensional representations
called hypervectors (HVs) [1]. These are processed
using three fundamental arithmetic operations and
one comparison operation—bundling, binding, permu-
tation, and similarity—which define the mathematical
space where information is encoded and manipulated.
By appropriately combining these operations, HDC
enables various learning tasks, including classification,
clustering, and regression.

We present the first RISC-V instruction set archi-
tecture (ISA) extension specifically designed to cover
the direct execution of fundamental HDC operations
in hardware. The new instructions, listed in Table 1,
are exposed to the programmer via intrinsic functions
and fully integrated into the GCC toolchain.

The ISA extension controls the Hyperdimensional
Coprocessor Unit (HDCU), a configurable hardware
accelerator integrated into the execution stage of the
Klessydra T03 RISC-V [2] core (Figure 1). The highly
configurable architecture allows customization at both
synthesis time and runtime. At synthesis time, users
can define hardware parallelism, memory size, and sup-
ported operations to balance resource utilization and
performance. At runtime, the size of HVs and the num-
ber of operations can be dynamically configured via
dedicated Control Status Registers (CSRs), enabling
the same hardware to adapt to varying workloads.

Description of the Solution

Building on the RISC-V ISA extension, the HDCU
executes HDC operations in hardware, optimizing per-
formance and energy efficiency, with each instruction
controlling a dedicated functional unit (FU) to ac-
celerate operations such as bundling, binding, and
permutation. Integrated into the Klessydra-T03 core,
the HDCU operates in parallel with the Arithmetic
Logic Unit (ALU) and Load Store Unit (LSU), leverag-
ing lightweight multi-threading for efficient workload
distribution. Upon fetching an HDC instruction, the
core checks unit availability and delegates execution
if idle, enabling concurrent operation of different FUs.
The HDCU employs Single Instruction Multiple Data
(SIMD) parallelism, allowing multiple HV elements to
be processed in a single cycle. The SIMD width, con-
figurable at synthesis time, balances execution speed
and hardware resources (i.e. SIMD=256 processes 256
HV elements concurrently.)

The custom RISC-V ISA extension ensures seamless
interaction between software and hardware. High-
level intrinsic functions translate into low-level instruc-
tions, offloading computationally intensive tasks to the
HDCU with minimal processor intervention. To en-
hance efficiency, hardware loops process HV elements
iteratively without redundant instruction fetches. Con-
trolled by CSRs, these loops adjust execution based
on HV size and parallelism, reducing overhead and
enabling efficient execution of complex tasks like en-
coding and associative search.

Hypervectors are stored in dedicated local Scratch-

RISC-V Summit Europe, Paris, 12-15th May 2025 1



Figure 1: Integration of the HDCU in the Klessydra core.
The accelerator works in parallel with the ALU and the
LSU during the execution stage, acting like a coprocessor.

pad Memories (SPMs) for high-bandwidth and low
latency access. Data transfers between main mem-
ory and SPMs are managed by dedicated load/store
instructions.

Results and Impact

The Klessydra-T03 core, including the HDCU, was
synthesized and tested on a Xilinx Zynq UltraScale+
ZCU106 (EK-U1-ZCU106-G) FPGA board to evaluate
its performance on key HDC tasks. Benchmarking
results, obtained using a custom testing library, show
substantial speedups, defined as the ratio of cycles
required for software execution with standard C code
to those using dedicated hardware.

As shown in Table 2, the HDCU provides substantial
acceleration across core operations, achieving up to
2665× speedup for HV sizes of 8192 with SIMD=1024.
This demonstrates the architecture’s scalability and
efficiency for computationally intensive tasks.

In real-world scenarios, such as classification, the
HDCU significantly reduced execution time across the
HDC pipeline, including encoding, training, and infer-
ence. For instance, it achieved 297× speedup on the
CARDIO dataset [3] and 2438× on the EMG dataset
[4] during inference. These results underscore its adapt-
ability for diverse applications, from low-power edge
devices to high-performance systems.

Conclusion

This work presented the Hyperdimensional Coproces-
sor Unit (HDCU), a flexible hardware accelerator for

Table 1: Custom RISC-V Instructions for HDC

Instruction Description

hvbundle(rd, rs1, rs2) Bundle the N -bit HV in rs1 with the binary
HV in rs2, storing the result in rd.

hvbind(rd, rs1, rs2) Bind HVs in rs1 and rs2, producing a new
HV in rd.

hvperm(rd, rs1, rs2) Permute the HV in rs1 by rs2 positions,
storing the result in rd.

hvsim(rd, rs1, rs2) Compute Hamming distance between HVs
in rs1 and rs2, storing the similarity in rd.

hvclip(rd, rs1, rs2) Binarize the HV in rs1 using threshold rs2,
storing the result in rd.

hvsearch(rd, rs1, rs2) Compare the HV in rs1 with all class HVs
in rs2, storing the closest match in rd.

hvmemld(rd, rs1, size) Load an HV from memory location rs1 into
the SPM at rd, for size bytes.

hvmemstr(rd, rs1, size) Store an HV from the SPM at rs1 to mem-
ory location rd, for size bytes.

Hyperdimensional Computing (HDC) integrated into
the Klessydra-T03 core via a custom RISC-V ISA ex-
tension. The HDCU efficiently executes fundamental
HDC operations while ensuring software programma-
bility.

Benchmarking showed up to 2665× speedup in core
operations and over 2438× in real-world classification
tasks. Its configurable design, with synthesis-time
parallelism tuning and runtime adaptability via CSRs,
balances execution speed and hardware resource use.

Beyond computational efficiency, the HDCU offers a
versatile framework for HDC, bridging domain-specific
acceleration and flexibility. Future work will refine
memory hierarchy, expand ISA capabilities, and sup-
port additional learning paradigms for broader adapt-
ability.

Table 2: Hardware utilization and speedup factors for
HDC operations across different degrees of parallelism
(SIMD), showing the scalability of the proposed HDCU
design with HV sizes ranging from 32 to 8192.

SIMD [bit] #LUTs #FFs f [MHz] Bind Perm. Bundle Sim.

32 1030 450 234 26.64× 18.80× 120.56× 157.38×
64 2040 651 221 50.49× 35.17× 237.69× 298.26×
128 3243 868 218 91.39× 62.28× 462.23× 539.90×
256 4016 1101 215 153.62× 101.37× 875.97× 907.49×
512 13811 3731 160 232.91× 147.71× 1585.62× 1375.88×
1024 34189 7478 140 313.92× 191.48× 2665.20× 1854.44×

References

[1] Denis Kleyko et al. “Vector symbolic architectures as a com-
puting framework for emerging hardware”. In: Proceedings
of the IEEE 110.10 (2022), pp. 1538–1571.

[2] Abdallah Cheikh et al. “Klessydra-T: Designing Vector
Coprocessors for Multithreaded Edge-Computing Cores”.
In: IEEE Micro 41.2 (2021), pp. 64–71. doi: 10.1109/MM.
2021.3050962.

[3] D. Campos and J. Bernardes. Cardiotocogra-
phy. UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C51S4N. 2010.

[4] A. Rahimi. EMG Dataset. Version 1.0. Jan. 2024. url:
https://github.com/abbas- rahimi/HDC- EMG/blob/
master/dataset.mat.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://doi.org/10.1109/MM.2021.3050962
https://doi.org/10.1109/MM.2021.3050962
https://github.com/abbas-rahimi/HDC-EMG/blob/master/dataset.mat
https://github.com/abbas-rahimi/HDC-EMG/blob/master/dataset.mat

	Introduction
	Description of the Solution
	Results and Impact
	Conclusion

