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Abstract

As the demand for more transparent artificial intelligence models grows, Bayesian Neural Networks (BNN) offer
a solution by enabling prediction uncertainty estimation. However, their computational requirements exceed
those of traditional neural networks. This work introduces GaZmusino, a low-cost RISC-V core extended with

instructions to accelerate 8.93x BNN inference.

Introduction

As Machine Learning (ML) models grow in complexity,
their energy demands increase, raising concerns about
sustainability. Shifting ML inference from data centers
to edge devices reduces energy consumption and mini-
mizes data transmission, making this change a more
sustainable alternative. This paradigm is commonly
known as TinyML. In addition, there is a growing
demand for transparency and trust in ML models,
especially in safety-critical applications where uncer-
tainty estimation is essential. Autonomous systems,
medical diagnostics, and industrial monitoring are ex-
amples where decision making under uncertainty is
crucial, yet classic neural networks (NN) often show
incorrect overconfident predictions [1].

Bayesian Neural Networks (BNN) provide calibrated
uncertainty estimates, improving their reliability [2].
However, BNN inference is more computationally ex-
pensive than conventional NNs mainly because of
their probabilistic nature. These overheads make effi-
cient BNN deployment on low-power microcontrollers
(MCU) challenging. Prior work on BNN acceleration
has focused on high-end FPGA accelerators with fixed
model architecture support [3]. On the contrary, this
work targets running Bayesian models on the edge.

We introduce GaZmusino, an open source RISC-
V processor! extended with instructions designed to
optimize BNN inference. Additionally, we introduce an
open source software toolchain? that can efficiently run
any BNN model trained in BayesianTorch [4] taking
advantage of GaZmusino. The toolchain automatically
applies software optimizations, such as Batch Norm
folding, and produces C code that benefits from our
proposed extension when available.
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Figure 1: 5-stage BNN-extended pipeline of GaZmusino.

Optimizing BNN Inference

Since most models are trained and represented in float-
ing point format, the first step in optimization is to
transform them into fixed-point representations. A
profiling analysis of our BNN inference code reveals
that the processor spends approximately 80% of exe-
cution cycles sampling Gaussian distributions.
Related work has shown that simpler distributions
can be used instead of Gaussian [3]. We observed that
using uniform random number generation (RNG) in-
stead of Gaussian achieves similar model performance
while reducing the sampling cost. To implement this
optimization efficiently, we introduce a dedicated uni-
form RNG functional unit in the GaZmusino execution
stage. This functional unit internally uses a 39 bit 32
step look-ahead linear feedback shift register.
Additionally, since BNNs heavily rely on fixed-point
arithmetic, we also add a fixed-point arithmetic unit
capable of executing multiply accumulate (MAC) op-
erations. BNN inference requires two MAC operations
where traditional NNs require only one. Scaling and
centering the weight sample requires one, and the stan-
dard forward pass computations requires a second one.
Figure 1 shows a diagram of the extended processor
pipeline. Both functional units are combined into a
new functional unit, called BNN unit, drawn in orange.
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These optimizations lead to the introduction of two
key new instructions: one for uniform RNG, which
generates uniform samples at a given fixed-point scale,
and the other for fixed-point MAC operations. To
complement these instructions, we add an instruction
to change the generator seed. The complete list of
instructions is provided below.

e fxgen.unif rd, I. Generates a uniform random
sample and shifts it by I bits.

e fxgen.seed ra. Sets the seed of the generator
using the value of a register.

e fx.madd rd, ra, rb, rc, I.Performs a fixed-
point MAC operation, right-shifting by I bits.

Evaluation

To evaluate BNN performance, we used the following
metrics: accuracy (Acc 1), reliability error (RE |),
which measures how well model outputs can be in-
terpreted as probabilities, and uncertainty calibration
error (UCE ) which measures how well prediction un-
certainty is related to the probability of the prediction
being wrong [5].

The results shown in Table 1 demonstrate that ap-
plying the proposed optimizations does not result in
significant degradation in any metric. The slight varia-
tions can be attributed to the precision loss introduced
by fixed-point arithmetic or the inherent probabilistic
nature of BNNs. We tested a diverse set of model
architectures recognized to be suitable for TinyML or
relevant in the BNN literature [6].

Table 1:
BayesianTorch (BT) results are shown as values, the GaZ-
musino (GZ) results are shown as differences with BT.

Optimization evaluation results. The

T Ace % LRE % L UCE %
Model BT GZ BT GZ BT GZ
HYPER 89.46 0.03 | 3.93 0.00 | 3.31 -0.11
LENET 62.61 -0.38 | 2.62 -0.75 | 4.09 1.35
B2N2 7577  0.17 | 213 -0.54 | 272  1.86
RESNET | 81.01 -1.34 | 2.23 -0.74 | 224 0.71
Average -0.38 -0.51 0.95
Std. Dev. 0.29 0.39 1.02

The performance improvements achieved in GaZ-
musino are summarized in Figure 2. To analyze the
cost of our implementation, we deployed GaZmusino
on a Zynq UltraScale+ ZCU104 Evaluation Board
FPGA, measuring resource utilization and energy con-
sumption. Table 2 presents these results, showing that
our extensions introduce only a modest increase in
hardware cost while reducing the image processing en-
ergy consumption by 87.12% in average and increasing
the image/J efficiency by 8.19x%.
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Figure 2: FEzecution profiling of a BNN forward pass
using and not using the custom extension.

Table 2: FPGA implementation results. The number of
hardware components are shown as values and percentage
of total available resources. BNN Ext. column shows the
cost of extending the pipeline.

GaZmusino BNN Ext.

LUTs 2532  1.10% 308

Registers 1745  0.38% 44

Power (W) 0.036 0.003
Conclusions

Our work proposes an open source low-cost RISC-V
processor alongside a lightweight ISA extension that
achieves an average 8.93x speedup and 8.19% image/J
efficiency increase for BNNs. Shifting the primary per-
formance bottleneck from weight sampling and com-
putation to control overhead. Moving forward, we aim
to continue refining our approach, further narrowing
the performance gap between BNNs and traditional
NNs, allowing the deployment of uncertainty-aware
models on the edge.
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