ACE: Atomic Cryptography Eztension for RISC-V

ACE: Atomic Cryptography
Extension for RISC-V

Roberto Avanzi!, Ruud Derwig 2, Luis Fiolhais?®, Richard Newell 4,
Barry Spinney 3, and Tolga Yalcin*

I Qualcomm, 2 Synopsys, 3 Independent Researcher, 4 Microchip

Abstract

We propose the Atomic Cryptographic Extension (ACE), an ISA extension which enables secure cryptographic
implementations. ACE separates key configuration for use by software from key usage, allowing separated

environments to perform these functions.

For instance, setting the key can be delegated to a secure TEE

applet. ACE also performs cryptographic operations in an atomic fashion (whence the name), in contrast to
current round-based AES extensions, that by their nature cannot conceal the key. Keys are stored in Context
Holding Registers (CHR), architectural registers containing keys and metadata. However, in contrast to other
architectural registers, CHRs cannot be read directly, and their contents can only be exported in encrypted,
authenticated formats for reimport, enabling secure key usage across context switches and process migrations.
ACE is work in progress of the High Assurance Cryptography (HAC) TG of RISC-V International.

Introduction

Secure implementation of strong encryption is essential
to many modern use cases. For instance, for content
protection schemes it is desirable that even compro-
mised processes cannot expose master keys, but, at
worst, only individual content items. Secure cryptog-
raphy is essential to identity management, communi-
cations, storage encryption, and emerging applications
like ML model deployment to end-user devices.

Delegating cryptographic operations to Trusted Ex-
ecution Environments (TEEs) can provide strong se-
curity for cryptographic operations. However, context
switching, shared memory setup, and common execu-
tion restrictions in TEEs like disabled speculation or
the use of non-cacheable memory introduce significant
performance overheads. Even with hardware accelera-
tors, TEE-based cryptography remains inefficient.

Modern CPUs commonly include cryptographic ex-
tensions, but they operate in a round-based fashion
and cannot conceal keys. Thus, they fail to provide
adequate security guarantees for sensitive applications.
The missing elements are: (i) secure, local and archi-
tected key storage and (ii) state machines to safely
implement cryptographic operations and protocols.

Architecture

Our approach allows software to perform crypto-
graphic operations directly using protected keys that
cannot be extracted or exposed. The Atomic Crypto-
graphic Extension (ACE) implements it by providing
the following functionality:

RISC-V Summit Europe, Paris, 12-15th May 2025

1. Context Holding Registers (CHRs) — Ar-
chitectural registers that securely store crypto-
graphic keys. Like integer and vector registers,
CHRs are defined per-hart. Once configured with
a key value, CHRs cannot be read to reveal that
value directly. Beyond storing keys and their asso-
ciated metadata, CHRs can maintain an internal
state required by modes of operation or hashing.

2. New CPU instructions:

(a)

Configuring a CHR with a key and
associated metadata — or erasing and
invalidating it. The metadata cannot be
set independently from the key, it binds the
latter to a specific algorithm, and may set
usage policies: For instance, a key may be
used for decryption only, to prevent certain
types of key misuse attacks.

Atomic cryptographic operations using
CHR-stored keys. Some implementations
may choose to provide only the AES and
Galois Multiplication, while other may sup-
port more algorithms. The list of algorithm
may also include threshold implementations
hardened against side-channel attacks.
Secure export/import of CHR con-
tents as encrypted and authenticated
Sealed Cryptographic Contexts (SCCs).
This is necessary for system software stacks
to enable secure context switching. It also
enables secure key request and delivery: For
instance, a requesting process may ask a se-
cure Applet to configure a CHR and export
it to a SCC. Upon return, the requesting
process be able to import the SCC into a



ACE: Atomic Cryptography Extension for RISC-V

CHR any time it needs it, without having to
switch contexts each time.
The key used to wrap and unwrap a SCC is
called the Context Transport Key (CTK).
(d) State management messages, to let the
algorithm associated with a CHR advance
through the stages of authenticated encryp-
tion (AEAD) or hash function processing.

3. The configuration instructions may config-
ure CHRs to use Immutable System Keys
(ISKs). The ISKs are the keys generated during
manufacturing, provisioning, or at boot. The ta-
ble is collated by the system’s RoT at boot and
pushed to an internal RAM of the ACE imple-
mentation without direct software exposure. Only
the RoT can write to this RAM.

4. Support for Lifecycle Management and Mi-
gration. ACE can bind a key to a specific lifecy-
cle. Some keys should only be valid until the next
shutdown or soft reset, whereas other keys are
permanently available. If a given key may only
be used on one device, it should become useless if
the process/VM is migrated to a different device.

Lifecycles are enforced as part of the CHR metadata,
and by the fact that they determine the keys used for
SCC import and export, as we discuss next.

Context Transport Keys and Lifecycle Policies.

A SCC is created by encrypting and authenticating a
CHR using a 256-bit Context Transport Key (CTK)
in the AES-GCM-SIV mode (RFC 8452). The format
of the SIV differs from RFC 8452 only in that the 8
least significant bits of the 128-bit SIV are replaced
by the Lifecycle field.

The default CTK is the Root CTK, and it can only
be set by Machine Mode. Import and export opera-
tions use either this Root CTK or a derived Lifecycle-
Specific Context Transport Key (LSCTK). The LSCTK
is derived from the Root CTK and a Lifecycle Secret
stored in the Lifecycle Secrets Table (LST), which is
part of the ISK Table. Each entry in the LST corre-
sponds to a value of the Lifecycle field in the SIV.

Example Lifecycles include: keys valid until next
boot, keys bound to specific devices, bound to device
models, or OEMs. Modifying an LST entry invalidates
all keys wrapped with its previous value, as they can
no longer be re-imported. This simple mechanism
enables the Root of Trust to manage key lifecycles
through the LST, which then apply to the SCCs.

Isolation and Migration of Process Keys are
not architected by ACE, but all the underpinnings
that are required to implement them are provided.
In place of configuring a single Root CTK for the
entire system, Machine Mode can also program a dif-
ferent Root CTK for each World/Supervisor Domain

(as per smmtt) to prevent the leakage of SCCs from
one Domain to another. Supervisor Domains may ask
MM to reconfigure the Root CTK before running a
VM or Applet, to mutually isolate the latter.

If a specific Root CTK is associated with a VM and
the VM must be migrated to a different device, the
MM can use a Key Encapsulation Mechanism (KEM)
to transfer this Root CTK to the destination device.
The destination device’s MM will then be able to set
the same root CTK when running the migrated VM.

All the keys that are stored as SCCs in the memory
of the VM (for instance, all the keys used by user
processes are exported and reimported for them by
the parent OS upon context switch) can then be used
on the target machine if their lifecycle setting allows.
For instance, if the CTK is the Root CTK, then any
SCC will be reimported. However, if a key is device
bound, the derived LSCTK will be different and import
will fail. This enables use cases such as subscriptions
being tied to a device, or services associated only to
given product tiers.

Instructions. The instructions supported by ACE
have self-explanatory names, such as ace.set (to set
key and metadata), ace.invalidate, ace.export,
ace.import, ace.execute, ace.size (to get the size
of the SCC, which may vary depending on the algo-
rithm), ace.available (to allow algorithm discover-
ability). A further instruction, ace.message, serves
to change the state machine of a CHR in a controlled
way, for instance to move from initialization, to mes-
sage absorption and then to finalization in a hash
function. A privilege level specific system register
(ACE_CHR_VALID) keeps track of whether a given CHR
is actually in use, in order to accelerate context switch
operations. Therefore, software developers shall use
ace.invalidate when a given key is no longer needed.

The Register File. As for the number of registers,
encoding allows up to 32 CHRs, with number 31 tied
to the Root CTK and only accessible by Machine
Mode. It is not mandatory to architect 32 registers:
We estimate that a typical system will need around
8 CHRs. Since CHRs are (relatively) seldom recon-
figured and they should not be speculated upon for
security reasons, they do not require (much) renaming.
As a result, even if they contained, say, 1000 bits (to al-
low keys in multiple shares), their hardware cost would
be minor in comparison to the integer, floating point
and vector register files of modern microarchitectures.

Conclusions

ACE is a solid architecture to support a variety of
high assurance cryptographic operations in a secure
way with a streamlined and uniform interface.

RISC-V Summit Europe, Paris, 12-15th May 2025



	Introduction
	Architecture
	Context Transport Keys and Lifecycle Policies.
	Isolation and Migration of Process Keys
	Instructions.
	The Register File.


	Conclusions

