
FPHUB-RISCV: HUB Floating-Point Unit in
RISC-V Platform – Format definition

Javier Hormigo∗, Julio Villalba, Gerardo Bandera, Sonia Gonzalez-Navarro,
Alfonso Martínez-Conejo, Alejandro Fuster, Jesús Lastre, Óscar Plata, Emilio L. Zapata†

Dept. Computer Architecture, Institute for Mechatronics Engineering & Cyber-Physical Systems, Universidad de Málaga

Abstract

FPHUB-RISCV is a 2-year "proof of concept" project within the Spanish PERTE chip. It aims to implement
a new floating-point arithmetic unit for RISC-V targeting low-resource applications. The unit will use a new
floating-point format called FPHUB, which allows us to simplify the implementation logic while keeping the
same precision as the IEEE 754 standard.

Introduction

The RISC-V specifications of the Floating-Point (FP)
instruction extensions demand that FP operations
must comply with the IEEE 754–2008 standard [1],
ensuring compatibility and precision across different
software and hardware platforms. However, this ad-
herence comes at a significant cost in terms of de-
sign complexity and hardware cost. Implementing
IEEE-compliant FP units often requires substantial
hardware resources to implement functionalities that
are not always necessary. Moreover, the availability
of open-source FP units for the RISC-V architecture
is extremely limited, and most existing implementa-
tions are optimized for full IEEE compliance rather
than efficiency or simplicity. This situation could be
attributed to the challenges and expenses associated
with designing an FP unit from scratch, notably when
prior experience in this domain is lacking. These prob-
lems hinder the adoption of floating-point formats for
low-power or resource-constrained environments.

Despite these challenges, there is a growing demand
for floating-point capabilities in low-cost, low-power
applications, such as IoT devices, edge computing, and
embedded systems, where precision is needed, but the
full rigor of the IEEE standard is often unnecessary.
This gap in the market underscores the need for inno-
vative designs that balance compatibility, performance,
cost, and energy efficiency, enabling broader adoption
of floating-point arithmetic in resource-constrained en-
vironments. Thus, our work aims to fill this technolog-
ical gap and provide a more accessible and efficient so-
lution for integrating low-resource floating-point units
into the RISC-V architecture. To do that, we have
been founded by the Spanish government through the

∗Corresponding author: fjhormigo@uma.es
†Grant PDC2023-145800-I00, founded by MICIU/AEI
/10.13039/501100011033 and European Union Next Gen-
eration EU/PRTR; and grant PID2022-136575OB-I00 by
MICIU/AEI/10.13039/501100011033

project FPHUB-RISCV.

FPHUB-RISCV Project

The FPHUB-RISCV is a "proof of concept" project
that aims to valorize our research results in the de-
sign of floating-point arithmetic operators for HUB
format. To do that, we are developing a low-power
FP unit using our HUB technology for floating-point
calculations. This FP unit should be versatile and
seamlessly fit into various existing or emerging RISC-
V architectures. The adoption of a HUB numerical
representation format [2] in our project offers a com-
pelling advantage: the ability to significantly reduce
the processor’s area and power consumption, all while
maintaining precision in calculations.

Our HUB approach, introduced in [2], stands out for
its ability to simplify arithmetic units at the logic level,
providing significant advantages in hardware imple-
mentations. The HUB approach concurrently reduces
area resources, power consumption, and critical path
delay [3]. Our research group has previously under-
taken comprehensive investigations into implement-
ing fundamental FP operations, including addition,
subtraction, multiplication, division, and square root,
using HUB formats at theoretical level [3, 4, 5, 6, 7].
More recently, we developed a functional prototype
of a floating-point Adder designed within a RISC-V
architecture [8]. We will build upon this experience to
develop our FP unit.

Since our main objective is technology transfer, this
work will be open source. We will have a public repos-
itory [9] with all the development available and the
corresponding documentation. We also plan to do
rigorous laboratory testing and field validation using
FPGAs. To facilitate the test of our new format for
third parties, we will develop a software library to sim-
ulate the FP calculation using HUB approach. The
first version of the FP unit should be available by

RISC-V Summit Europe, Paris, 12-15th May 2025 1



next year. We should note that although the source
code will be available with a permissive license, the
Universidad of Malaga held several Spanish patents
concerning HUB circuits. Therefore, commercial use
of the developed FP unit within Spain may require a
technology transfer agreement with our University.

It is essential to highlight that among our objectives,
there is no intention to independently undertake the
physical implementation of a RISC-V processor with
our FP unit in ASIC. This falls outside our current
expertise. However, if there is a suitable partner with
the expertise to integrate our design into an ASIC, we
are open to collaborating to achieve this goal.

FPHUB: Floating Point HUB
format

In this section, we present the specific format that
we will implement in this project, which we will call
FPHUB. The fundamentals of general HUB FP for-
mats can be found in [2].

An FPHUB number is similar to a binary IEEE
standard one but, similarly to the implicit integer bit,
its significand also has an Implicit Least Significant Bit
(ILSB) set to one. Thus, the normalized FPHUB sig-
nificand has the form 1.Mx1, where Mx is the explicit
fractional part of the significand with f fractional bits.

Moreover, not-a-number (NaN) and subnormal are
not considered, allowing us to expand normalized num-
bers’ exponent. Thus, the bias of the exponent is set to
2nexp−1 instead of 2nexp−1 − 1, where nexp is the num-
ber of bits of the exponent. Therefore, a normalized
FPHUB number is coded by the triple (Sx, Ex,Mx),
which represents the value:

X = (−1)Sx(1 +Mx + 2−f−1)2Ex−2nexp−1

, (1)

where Sx is the sign, and Ex is the biased exponent.
On the other hand, we keep the special signed zero

and infinities. However, although zero has the same
codification (both exponent and significand equal zero),
the infinities are coded with the maximum value of the
significand (all 1’s) instead of zero. Furthermore, we
have also added the signed one as a special case. The
one case is coded using "all 0‘s" for the significand
field, and the exponent is coded as 2nexp−1. In table 1,
we summarize the special cases for the example of
binary32.

Another critical point is that rounding–to–nearest
is the only rounding mode supported by FPHUB, al-
though it could be biased or unbiased for the tie case.
The former case is performed simply by truncation [3]
of the significand. The latter one also needs that the
explicit last significant bit was set to zero when all
discarded bits are 0’s[10]. Moreover, all numbers lower

Case Code 8 bits 23 bit
0 (0, 0, 0) 0 00000000 000000...0000000
0 (1, 0, 0) 1 00000000 000000...0000000

+1 (0, 128, 0) 0 10000000 000000...0000000
-1 (1, 128, 0) 1 10000000 000000...0000000
+∞ (0, 255, 223 − 1) 0 11111111 111111...1111111
−∞ (1, 255, 223 − 1) 1 11111111 111111...1111111

Table 1: Special cases for FPHUB with 8-bit exponent
and 24-bit precision

than the minimum normalized number are flushed to
zero with their corresponding sign (underflow).

The FPU will be integrated as a Zfinx extension to
reduce the cost. Thus, we will implement a binary32
FPHUB. This first design could be extended to other
sizes later.

References

[1] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE
Std 754-2008 (Aug. 2008), pp. 1–70. doi: 10 . 1109 /
IEEESTD.2008.4610935.

[2] J. Hormigo and J. Villalba. “New formats for comput-
ing with real-numbers under round-to-nearest”. In: IEEE
Transactions on Computers 65.7 (2016), pp. 2158–2168.
issn: 00189340. doi: 10.1109/TC.2015.2479623.

[3] Javier Hormigo and Julio Villalba. “Measuring Improve-
ment When Using HUB Formats to Implement Floating-
Point Systems under Round-to-Nearest”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Sys-
tems 24.6 (2016), pp. 2369–2377. issn: 10638210. doi:
10.1109/TVLSI.2015.2502318.

[4] J. Villalba-Moreno. “Digit Recurrence Floating-point Di-
vision under HUB Format”. In: 23rd IEEE Symposium on
Computer Arithmetic, Silicom Valley (California, USA)
(July 2016).

[5] Javier Hormigo and Julio Villalba. “HUB Floating-Point
for Improving FPGA Implementations of DSP Appli-
cations”. In: IEEE Transactions on Circuits and Sys-
tems II: Express Briefs 64.3 (2017), pp. 319–323. doi:
10.1109/TCSII.2016.2563798.

[6] J. Villalba-Moreno and J. Hormigo. “Floating Point
Square Root under HUB Format”. In: 2017 IEEE Inter-
national Conference on Computer Design (ICCD). Nov.
2017, pp. 447–454. doi: 10.1109/ICCD.2017.79.

[7] Javier Hormigo, Julio Villalba-Moreno, and Sonia
Gonzalez-Navarro. “Floating–Point Fused Multiply–Add
under HUB Format”. In: 2020 IEEE 27th Symposium
on Computer Arithmetic (ARITH). 2020, pp. 1–8. doi:
10.1109/ARITH48897.2020.00010.

[8] Gerardo Bandera et al. Floating Point HUB Adder for
RISC-V Sargantana Processor. 2023. url: https : / /
arxiv.org/abs/2401.09464.

[9] FPHUB-RISCV. HUBformat Repository. Accessed: 2025-
02-05. 2025. url: https://github.com/HUBformat.

[10] Julio Villalba-Moreno, Javier Hormigo, and Sonia
González-Navarro. “Unbiased Rounding for HUB Floating-
Point Addition”. In: IEEE Transactions on Computers
67.9 (Sept. 2018), pp. 1359–1365. issn: 1557-9956. doi:
10.1109/TC.2018.2807429.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/TC.2015.2479623
https://doi.org/10.1109/TVLSI.2015.2502318
https://doi.org/10.1109/TCSII.2016.2563798
https://doi.org/10.1109/ICCD.2017.79
https://doi.org/10.1109/ARITH48897.2020.00010
https://arxiv.org/abs/2401.09464
https://arxiv.org/abs/2401.09464
https://github.com/HUBformat
https://doi.org/10.1109/TC.2018.2807429

	Introduction
	FPHUB-RISCV Project
	FPHUB: Floating Point HUB format

