
Integration of a CGRA Accelerator with a
CVA6 RISC-V Core for the Cloud-edge

CGRA Operation

Juan Granja, Daniel Vázquez, Alfonso Rodríguez, Andrés Otero

RISC-V Summit Europe 2025 juan.granja@upm.es

Grant No. 101135183

Debug
module

CVA6
I$ D$

Peripherals DRAM
controller

Boot
ROM

AXI4 X-bar

UART SPI TIMER
...

CGRA Module

C
G

R
A

Master
port

Slave
port

0 1 2 3 4 5 6 7
Execution Time (Clock Cycles) 1e5

CGRA

CPU

CPU vs CGRA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Execution Time (Clock Cycles) 1e5

CGRA

CGRA time distribution

Execute
Load Config.
Setup
Mem. copy

In the context of the development of adaptable nodes for the cloud-edge continuum, this work integrates a Coarse-
Grain Reconfigurable Array (CGRA) accelerator with an application-class RISC-V processor on a System on Chip. The
resulting platform is deployed on an FPGA, and its performance is evaluated when accelerating a set of relevant tasks,
both in a bare-metal environment and under a Linux operating system.

• CGRA module as a wrapper with an AXI-4 interface,
includes hardware for data provisioning and memory-
mapped registers for configuration and control.

• Single-beat DMA interface with multiple outstanding
transactions allows non-contiguous accesses to high-
latency DRAM.

• Deployed in FPGA emulation of OpenHW Group's CVA6
Development Platform on the KC705 board.

• STRELA CGRA: 4x4 grid of processing elements
capable of integer arithmetic, logical & comparison
operations on 32-bit words.

• A code fragment is mapped to the CGRA, either by
hand or with a compiler.

• Configuration and input data are placed in memory,
after processing, output data is written back to memory.

• Usable under Linux with a custom kernel module.

• Evaluated speedup with respect to software solution with two
benchmarks: ReLU (32 KiB of 32-bit words) and 2D Convolution
(64x64 images, 3x3 kernel).

• Single master port for DMA results in less speedup than in previous
CGRA integration in the X-HEEP microcontroller platform, with 8 way
interleaved on-chip memory and multiple master ports.

• Significant overhead under Linux: 5x slower in software, CGRA
execution dominated by data copy to shared memory region.

Task Bare-metal Linux X-HEEP

ReLU 8.7x 2.2x 15.4x

2D Convolution 1.1x 4.3x 18.6x

• CGRA configuration with custom RISC-V
instructions.

• Interleaved accelerator cache to speed up
memory access.

CGRA Speedup

Execution time of the ReLU task under Linux

GitHub
Repository

CGRA Integration in the CVA6 SoC

Results

Future Work

