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In the context of the development of adaptable nodes for the cloud-edge continuum, this work integrates a Coarse-
Grain Reconfigurable Array (CGRA) accelerator with an application-class RISC-V processor on a System on Chip. The 
resulting platform is deployed on an FPGA, and its performance is evaluated when accelerating a set of relevant tasks, 
both in a bare-metal environment and under a Linux operating system.

• CGRA module as a wrapper with an AXI-4 interface, 
includes hardware for data provisioning and memory-
mapped registers for configuration and control.

• Single-beat DMA interface with multiple outstanding 
transactions allows non-contiguous accesses to high-
latency DRAM.

• Deployed in FPGA emulation of OpenHW Group's CVA6 
Development Platform on the KC705 board.

• STRELA CGRA: 4x4 grid of processing elements 
capable of integer arithmetic, logical & comparison 
operations on 32-bit words.

• A code fragment is mapped to the CGRA, either by 
hand or with a compiler.

• Configuration and input data are placed in memory, 
after processing, output data is written back to memory.

• Usable under Linux with a custom kernel module.

• Evaluated speedup with respect to software solution with two 
benchmarks: ReLU (32 KiB of 32-bit words) and 2D Convolution 
(64x64 images, 3x3 kernel).

• Single master port for DMA results in less speedup than in previous 
CGRA integration in the X-HEEP microcontroller platform, with 8 way 
interleaved on-chip memory and multiple master ports.

• Significant overhead under Linux: 5x slower in software, CGRA 
execution dominated by data copy to shared memory region.

Task                    Bare-metal     Linux     X-HEEP

ReLU                   8.7x              2.2x     15.4x

2D Convolution      1.1x              4.3x      18.6x

• CGRA configuration with custom RISC-V 
instructions.

• Interleaved accelerator cache to speed up 
memory access. 
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