A Deep Dive into
Integration Methodologies in RISC-V

Alessadra Dolmeta!, Valeria Piscopo!, Maurizio Martina!, Guido Masera!

1DET, Politecnico di Torino, Torino, Italy

Abstract

The integration methodology can significantly affect the performance of dedicated accelerators.

This work

undertakes an exploration of this aspect, considering Keccak, a pivotal hashing standard in Post-Quantum
Cryptography (PQC), as a case of study. The paper presents three versions of KRONOS (Keccak RISC-V
Optimized eNgine fOr haShing): a loosely-coupled memory-mapped accelerator, a tightly-coupled approach,
and a coprocessor. The latter two versions leverage the CV-X-IF interface, with and without, respectively, an
additional register file to store the Keccak state. Results show that the tightly approach is the most efficient
integration method, achieving a balance between resource consumption and throughput.

Introduction

In embedded systems design, the growing computa-
tional demands have driven the integration of spe-
cialized accelerators. The chosen integration method-
ology significantly impacts system performance and
efficiency, with three primary approaches: loosely cou-
pled, tightly coupled, and coprocessors.

Loosely coupled accelerators are generally memory-
mapped and operate independently, interfacing with
the CPU via a system bus (e.g., AXI). Conversely,
tightly coupled accelerators are integrated within the
CPU microarchitecture and directly access internal
registers. This minimizes latency but requires core
modifications and instruction set extensions. Whilst
the former methodology offers greater versatility, the
latter delivers low-latency execution, albeit at the
cost of core and toolchain modification. Coprocessors,
though also interfaced with the CPU, differ by utiliz-
ing external register files, allowing for more complex
computations and multi-core scalability. Unlike tightly
coupled accelerators, they provide greater flexibility
without strict internal register constraints.

RISC-V’s open-source ecosystem has further ad-
vanced accelerator research, particularly with the Core-
V eXtension InterFace (CV-X-IF)!, which streamlines
tightly coupled accelerator integration without modi-
fying the CPU toolchain and pipeline.

This study explores different integration strategies
for KRONOS, a Keccak RISC-V Optimized eNgine
for haShing. Since Keccak is the core hash function
in many PQC schemes [1], dedicated acceleration can
significantly enhance performance. While the tightly
coupled approach achieves the lowest speed-up among
the three methods, it offers the best Throughput/Area
trade-off with minimal resource overhead. The imple-

L https://github.com/openhwgroup/core-v-xif/tree/main

RISC-V Summit Europe, Paris, 12-15th May 2025

mentations are available open-source. 2

Integration Methodologies

Keccak, the winner of the SHA-3 Cryptographic Hash
Algorithm Competition, offers superior robustness and
security over other hash standards. Its sponge struc-
ture relies on the Keccak-f permutation, which oper-
ates on a 1600-bit state, structured as a 5x5 matrix of
64-bit words. This permutation runs 24 rounds, each
comprising five steps: 0, p, 7, x, and ¢.

The three versions of KRONOS, shown in Fig. 1,
are integrated into X-HEEP[2], a RISC-V-based mi-
crocontroller, using different approaches. All three
versions use the CV32E40PX core3.

Loosely coupled. The first approach consists of a
loosely coupled, memory-mapped component, acceler-
ating the complete Keccak-f permutation (Fig. 1a).
Fifty additional 32-bit registers (Keccak Reg) are used
to store the state, reducing the load/store operations
to and from the memory. A dedicated driver is used
to call KRONOS when needed.

Tightly coupled. The second approach leverages
the CV-X-IF interface (Fig. 1b) to implement RISC-
V-compliant custom instructions. These instructions
adhere to the standard two-source, one-destination
register format, ensuring compatibility with the scalar
register file. Since Keccak was originally designed
for 64-bit architectures, an initial adaptation involves
modifying the code to operate efficiently on 32-bit reg-
isters. A key component of KRONOS in this context
is bitwise rotation, for which the rol 32 instruction
has been introduced. This dedicated operation enables
efficient 64-bit rotations by working directly on two
32-bit registers.

2 https://github.com /vlsi-lab/KRONOS
3 https://github.com /esl-epfl /cv32e40px

CV32E40PX

RISC
CV32E40PX

System Bus

KRONOS

R

RISC CV32E40PX A

CV-X-IF
ispatcher
AL

RISC

a
CV-X-IF | A
- cakieg ©
ispatcher REG ks
o

KECH

/ KRONOS

(a) Loosely coupled approach.

(b) Tightly coupled approach.

(¢) Coprocessor approach.

Figure 1: Comparison of different integration approaches. The controllers of (b) and (c) are not shown for simplicity.

Coprocessor. The third version is a coprocessor
(Fig. 1c). As in the first case, the complete Keccak-f
permutation is performed, but the CV-X-IF facilitates
communication with the core. Three R-type custom
instructions have been added to store/load the state
into Keccak Reg and to start the 24-round permutation.
Unlike the previous version, this implementation is not
fully compliant with RISC-V instruction set extensions
(ISE).

Results and conclusions

In this section, we report our implementation results.
Tab. 1 illustrates the cycle counts for executing the
SHA3-384 function on X-HEEP platform using the
three different methods, and their relative speed-ups
and throughput. The -02 flag is used for reference
and accelerated simulations.

Table 1: Cycle counts (SHA3-384).

Method | Ref. Accel. | Speed-up | Thr.
factor [Mb/s]
Loosely 4,169 13.56 % 4.61
Tightly | 56,529 | 31,527 | 1.79x 0.61
Coproc 7,553 7.48x 2.54

Tab. 2 presents a comparison of the FPGA area
results for the three versions, implemented on the
Zynq UltraScale+ ZCU104 board (xczuTev-fivel156-2-
e). The synthesis and implementation are performed
using Xilinx Vivado, with a global clock of 50 MHz.

The last column of Tab. 2 also presents the Through-
put/Area results, allowing for a final comparison
among the three approaches. The optimal trade-off be-
tween area and throughput is provided by the tightly
coupled version. Although it offers the lowest through-
put and speed-up among the three cases, it provides
a lower number of LUTs with respect to the loosely
and coprocessor versions of, respectively, almost 9
and 11 times. Additionally, the absence of a dedicated
Keccak register file results in a substantially more com-
pact solution when compared to the other integration
methodologies.

Table 2: Resource utilizations (ZCU104, 50 MHz).

Method LUT | Registers Thr./Area
[kb/(s-LUTs)]
Loosely
o KRONOS 4,915 | 3,252
o Controller 7 35 0.937
o Keccak 4,908 | 1,617
o Register File | 0 1,600
Tightly
o KRONOS 569 139
o Controller 569 102 1.070
orol 32 0 32
Coproc
o KRONOS 6,591 | 3,372
o Controller 1,181 | 125 0.386
o Keccak 5,409 | 1,615
o Register File | 0 1,600
Acknowledgement
This work was funded by project SERICS

(PE00000014) under the MUR National Recov-
ery and Resilience Plan funded by the European
Union - NextGenerationEU. This work received
funding from the Key Digital Technologies Joint
Undertaking (KDT-JU) under grant agreement No
101095947.

References

[1] G. Bertoni et al. “FIPS PUB 202 - SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Func-
tions”. In: (2015). URL: https://keccak.team/hardware.
html.

[2] Simone Machetti et al. X-HEEP: An Open-Source, Con-
figurable and Extendible RISC-V Microcontroller for the
Ezxploration of Ultra-Low-Power Edge Accelerators. 2024.
arXiv: 2401.05548 [cs.AR].

RISC-V Summit Europe, Paris, 12-15th May 2025

https://keccak.team/hardware.html
https://keccak.team/hardware.html
https://arxiv.org/abs/2401.05548

	Introduction
	Integration Methodologies
	Results and conclusions
	Acknowledgement

