

Enhancing your RISC-V SoC debug & optimization with embedded functional monitors

Mat O'Donnell, Software Architect Lead Tessent Embedded Analytics, Siemens EDA

Agenda

Functional Monitoring – what and why?

Mitigating issues for high bandwidth

Actionable insights – Customer Use Cases

Continuous in life monitoring

Summary

Functional monitoring – why?

The effort required to validate, debug, and optimize SoCs continues to escalate

Need better ways to observe if SoCs behave and perform as intended

Reduces SoC debug effort prior to launch

Simplifies system performance optimization before and after launch

Functional monitoring – what?

Observing non-intrusively if your SoC behaves as it was designed

System-wide functional monitoring

Full system-level debug and functional monitoring provide additional insights

- Smart Filtering
- Smart Logging
- Counters
- Cross-triggering

```
# configure filter for writes between two addresses
filter = hsdk.BusMonitor.Interface.Filter()
filter.address(0x60000000, 0x60054600, "inclusive")
filter.types("write")
```


- Smart Filtering
- Smart Logging
- Counters
- Cross-triggering

```
# configure filter
filter = hsdk.BusMonitor.Interface.Filter()
filter.types("write")

# trace any transactions that match the filter
trace = interface.trace(filter, "write_address")
```


- Smart Filtering
- Smart Logging
- Counters
- Cross-triggering

```
# configure filter
filter = hsdk.BusMonitor.Interface.Filter()
filter.address(0x60000000, 0x61000000, "inclusive")

# count the number of busy cycles
count = interface.count("busy_cycles", "count", filter)
```


- Smart Filtering
- Smart Logging
- Counters
- Cross-triggering

```
# configure filter
filter = hsdk.BusMonitor.Interface.Filter()
filter.address(0x600000000, 0x600000004, "inclusive")
filter.type("write")

# fire an event when the filter matches
event = hsdk.BusMonitor.Event()
bus_monitor.event(filter, event)

# configure SMB as a circular buffer
smb = hsdk.SMB("to")
smb.output_on(event)
```


Monitoring for performance improvements

CPU performance loss

Identified excessive max cache miss duration, which impacted overall performance

Memory bandwidth degradation

All cores try to access memory with high bandwidth simultaneously

Details: How Picocom optimizes 5G SoCs and networks with Tessent

Functional monitoring for actionable insights

```
soc_noc_rt0=>{0x3E02_0000 to 0x3E02_8000 }
Address: 0x00000428 Name: region55_subregion1_cnr_if_snoc_uaxia_m_ia_agent_status => req is outstanding, value: 0x10
Address: 0x00000828
                      Name: region55_subregion2_cnr_if_snoc_uaxia_s_ta_agent_status => NO outstanding req, value:0x0
                      Name: region55_subregion3_cnr_if_snoc_uaxib_m_ia_agent_status => NO outstanding req, value:0x0
Address: 0x00000c28
Address: 0x00001028
                      Name: region55 subregion4 cnr if snoc uaxib s ta agent status=> NO outstanding req, value:0x0
Address: 0x00001428
                      Name: region55_subregion5_cxram_csr_ta_agent_status => NO outstanding req, value:0x0
Address: 0x00001828
                      Name: region55_subregion6_lxb_snoc_daxi_s_ta_agent_status => NO outstanding req, value:0x0
Address: 0x00001c28
                      Name: region55_subregion7_lxb_snoc_daxia_m_ia_agent_status => NO outstanding req, value:0x0
Address: 0x00002028
                      Name: region55 subregion8 lxb snoc daxib m ia agent status=> NO outstanding req, value:0x0
Address: 0x00002428
                      Name: region55 subregion9 rt1 access ta agent status => NO outstanding req, value:0x0
Address: 0x00002828
                      Name: region55 subregion10 soc cip pcie data ia agent status, req is outstanding, value: 0x50
Address: 0x00002c28
                      Name: region55 subregion11 soc cip sys cfg s ta agent status, resp is active, value: 0x20
Address: 0x00003028
                      Name: region55 subregion12 soc cip sys data ia agent status, => NO outstanding req, value:0x0
Address: 0x00003428
                      Name: region55_subregion13_soc_cxram0_ta_agent_status => NO outstanding req, value:0x0
Address: 0x00003828
                      Name: region55_subregion14_soc_cxram1_ta_agent_status => NO outstanding req, value:0x0
Address: 0x00003c28
                      Name: region55 subregion15 soc cxram2 ta agent status => NO outstanding req, value:0x0
Address: 0x00004028
                      Name: region55_subregion16_soc_cxram3_ta_agent_status => NO outstanding req, value:0x0
Address: 0x00004428
                      Name: region55_subregion17_soc_dbg_smb_m_ia_agent_status_=> NO outstanding req, value:0x0
Address: 0x00005428
                      Name: region55_subregion21_soc_dbg_smb_s_ta_agent_status => NO outstanding req, value:0x0
Address: 0x00005828
                      Name: region55_subregion22_soc_dbg_trace_sram_ta_agent_status => NO outstanding req, value:0x0
Address: 0x00005c28
                      Name: region55 subregion23 soc if csr ta agent status => NO outstanding req, value:0x0
        soc_noc_rt1=>{0x3E02_8000 to 0x3E02_C000 }
Address: 0x00000028
                     Name: region8 subregion0 lxb snoc daxi s ia agent status
Address: 0x00000428
                      Name: region8 subregion1 lxb snoc daxia s ta agent status
Address: 0x00000828
                      Name: region8 subregion2 lxb snoc daxib s ta agent status
Address: 0x00001028
                      Name: region8_subregion4_rt1_access_ia_agent_status, req is outstanding, value: 0x10
```

Functional monitoring for actionable insights

0:0 2455293,xbm5,177493478730,Y,axi monitor port 0,flag:state_change,channel:read_addr(direct),enabled:0,history_mode:stream

Functional monitoring for actionable insights

Traditional methods produce very large amount of trace data

SoC instrumented with Embedded Analytics IP Capture relevant data around trigger condition Debug trace before, during and after failure

Building a Scalable SLM Solution

Summary

Functional monitoring reduces debug time

Added visibility simplifies performance optimization

Smart functional monitoring helps save bandwidth

End-to-end, from bring-up to in-life

Join us at RISC-V Europe Summit 2025

Presentation

Efficient debug and trace of RISC-V systems: a hardware/software co-design approach

Thursday May 15, 10:00 in Gaston Berger (S2)

Poster session available at Thursday May 15, Island 1.1 (S1)

Presentation

Unleashing the Power of RISC-V E-Trace with a Highly Efficient Software Decoder

Thursday May 15, 11:45 in Gaston Berger (S2)

Poster session available at Thursday May 15, Island 2.2 (S2)

Demo presentation

RISC-V on-chip debug & trace solution: Tessent UltraSight-V

