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Abstract

High-Performance Computing (HPC) systems are designed for large-scale processing and complex data analysis,
utilizing scalability, efficiency, and parallelism, often with specialized hardware like Vector Processing Units
(VPUs). RISC-V plays an interesting role in this context for its inherent extendability and the availability of
open-source microarchitecture designs. Still, as these systems become more complex, their susceptibility to errors
and failures poses significant challenges. Our research addresses this by implementing advanced fault tolerance
techniques in the Vitruvius+ architecture, a partial out-of-order RISC-V VPU. Notably, we present the first full
RTL-level implementation of instruction replication in an HPC-class vector processor for reliability. We explore
redundancy mechanisms in critical architectural units, achieving a 75% reduction in non-silent faults leading
to system failure, supported by extensive fault injection simulations, with only a 7.5% hardware overhead and
minimal clock frequency variation.

Introduction
RISC-V is an open-source instruction set architecture
(ISA) developed and designed to be highly flexible and
customizable, allowing various implementations across
various hardware platforms. One of the areas where
RISC-V is particularly important is Fault Tolerant
(FT) computer architecture. These techniques that
emerged during the space age to address faults from
cosmic rays have become crucial in designing current
and future High-Performance Computing (HPC) sys-
tems, as they operate in parallel across thousands of
nodes. Due to high hardware complexity and perfor-
mance demands, these systems often rely on software-
level FT techniques, like software checkpointing with
rollback recovery [1], which is complex due to its inte-
gration with libraries, programming models, and data
storage [2]. These methods can lead to significant per-
formance drops, with latency overheads reaching 6X -
8X [3]. As a result, software-level replication has been
used to ensure application reliability despite individual
component failures, proving more efficient than exten-
sive checkpointing in petascale and exascale systems.
However, it still incurs substantial overhead. This
work explores hardware support for instruction-level
replication within HPC cores, which aims to mitigate
this overhead while protecting critical components like
the vector processor pipeline and floating-point units
from soft errors. The Vitruvius+ Architecture [4] is
compliant with RISC-V vector extension (RVV ver-
sion 1.0) and is a decoupled vector accelerator with
lightweight out-of-order execution capabilities boosted
by vector register renaming and concurrent execution
of memory and arithmetic instructions. Vitruvius+
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mainly targets HPC applications characterized by long
vectors; it supports up to 16384 bits in a vector regis-
ter, and it can manage any vector length of up to 256
Double-Precision (DP) 64-bit floating-point elements.

Methodologies
The Fault Tolerant RISC-V Vitruvius+ Architecture
[5], depicted in Figure 1, maintains the same vector
characteristics of the original version, plus some mod-
ifications and adjustments. The approach is based
on temporal redundancy in conjunction with ECC.
Generally speaking, the main advantage of tempo-
ral redundancy (instruction replication) techniques
is related to the almost null hardware overhead at
the expense of time overhead. The green blocks in
the Figure 1 are related to the temporal redundancy
hardware support, which implements the Instruction
Duplication for all the arithmetic instructions within
the Front End and the Reorder Buffer blocks. Ev-
ery duplicated instruction (called EVEN and ODD)
is written inside the ECC buffer as the parity code
word produced by the logic. If the ECC comparison
reports a mismatch, the instruction is not committed,
and a kill / roll-back hardware procedure is activated
to recover the status of the VPU before the execution
of the faulty instruction.

The ECC calculation (red blocks in Figure 1) gives
the advantage of protecting the VRF and comparing
the calculated values of each replicated instruction
result before writing it in the VRF rather than com-
paring the whole replicated result vectors. To reduce
potential performance issues from latency in error cor-
rection and data rewriting in the VRF, the rewriting
can be delayed while immediately using corrected data
in subsequent instructions. For VRF correction, the
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Figure 1: Fault tolerant - Vitruvius+ Architecture

error signals are counted in a custom CSR. When the
count reaches a set threshold, the OS activates a soft-
ware routine to recover the faulty data by performing
a read-write cycle.
Impact on Hardware Resources
The synthesis results are depicted in Table 1. In
the typical corner case (TT / 0.80 V / 25°C), the
fault-tolerant design achieved a maximum frequency
of 1.47 GHz, slightly lower than the 1.51 GHz of the
original design. In the slow corner case (SS / 0.72
V / 125°C), the frequencies were 1.04 GHz and 1.08
GHz, respectively. The area occupation results show a
hardware overhead of 7.5% for the fault-tolerant design,
primarily due to the implementations in the Register
File (6.83%) and instruction duplication (0.67%). The
single lane, particularly the FPU and VRF, consumes
most area, with only 10% of VPU signal distribution
allocated to non-lane blocks, making lane faults more
probable during fault injection simulations.

Table 1: Synthesis results using Cadence Genus Synthesis
Solution 19.11 on the 8T GF22FDX library.

VPU Area VPU Frequency (typ) VPU Frequency (slow)
No ECC - No HW-ID 1.49 µm2 1.51 GHz 1.08 GHz
ECC - HW-ID 1.61 µm2 1.47 GHz 1.04 GHz

Fault Injection Results
The fault injection test campaign was done using a
UVM environment able to collect four different types of
information by means of a comparison with the RISC-
V Instruction Set Simulator Spike. It was chosen to
analyze only the 0-index bit of all the signals belonging
to Lane 0, for a total of approximately 3400 faulty
bits per simulation run with an average of 1 fault
every 300 clock cycles to avoid multiple faults hitting
two copies of the same instruction (EVEN and ODD).
The introduced features reduce the occurrence of non-
silent undetected faults that would result in application
failure by 75%.

Conclusion
This work presents the design and validation of a
fault-tolerant RISC-V VPU for HPC systems, build-
ing on the Vitruvius+ architecture, and incorporat-
ing instruction-level hardware Temporal Redundancy.
This design shows a 75% reduction in non-silent unde-
tected faults and improves upon traditional software
checkpointing methods with only a 7% area overhead
and minimal performance degradation due to instruc-
tion duplication. The computational overhead from
instruction duplication impacts performance primarily
for latency-sensitive and throughput-sensitive tasks.
In the worst-case scenario with all arithmetic instruc-
tions, execution time could double, yet this overhead
remains stable in multi-node setups.
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