
AIA User Priority Mask Extension
Minimizing Critical Sections Side-Effects on

Real-Time Automotive Systems

Sandro Pinto, José Martins, Manuel Rodriguez, Kajetan Nuernberger*, and Thomas Roecker*

Centro ALGORITMI - UMinho, OSYX Technologies, *Infineon AG

Abstract

Critical sections are widely used in many real-time automotive scenarios; however, if not adequately supported
at the ISA level, it can lead to unintended performance impact. Studies within the AUTOSAR community point
to nearly 30% CPU-load. In this work, we advocate that the RISC-V ISA (and related specifications) cannot
efficiently support critical sections for real-time automotive systems. To address that, we propose a novel AIA
extension. We implemented the proposed extension on a CVA6-based SoC endowed with an Advanced Interrupt
Architecture (AIA) IP and functionally validated the intended behavior. We are now deriving quantitative
evidence/statistics to support the discussion of the current proposal at RISC-V International. We are going to
open-source all artifacts to promote collaboration within the RISC-V community.

Introduction

RISC-V is gaining incredible momentum in the auto-
motive industry. Quintauris was jointly funded by six
leading automotive-related companies with the goal of
advancing the adoption of RISC-V in the automotive
market, and at the same time, the European Union is
financing millions through multiple R&D projects tar-
geting RISC-V automotive (e.g. RIGOLETTO). Fur-
thermore, RISC-V Automotive SIG was also restarted
and increasing synergies are being developed in related
working groups (e.g., Safety SIG).

In this work, we highlight the existing gap in the
RISC-V ISA (and related specifications) to efficiently
support critical sections. To address that, we propose
a novel AIA extension - User Priority Mask - to
minimize the side effects of critical sections in the
context of real-time automotive systems.

RISC-V AIA in a nutshell

The AIA specification [1] encompasses (1) an extension
to the privileged ISA, the (2) Advanced Platform-Level
Interrupt Controller (APLIC), and the (3) Incoming
Message-Signaled Interrupt Controller (IMSIC). The
newly introduced CSRs, via Smaia/Ssaia, implement
a simplified interface for seamless interaction with the
IMSIC. The IMSIC consists of a set of interrupt files
to support MSIs. For each privilege level and virtual
hardware hart capable of receiving MSIs, the IMSIC
hart contains an interrupt file. The interrupt file
comprises two arrays: one to track pending interrupts
and another to enable the interrupt.

Motivation

Critical Sections: Automotive Use Cases. Criti-
cal sections are required in various real-time automo-
tive scenarios, such as (i) reconfiguration of memory
protection systems, (ii) management of local datasets,
and (iii) replacement of key information, to name a few.
Although these operations are short (a few nano to
milliseconds), they are frequently invoked. Every time
a critical section is enforced, a pair of software routines
for enabling/disabling interrupts is invoked. In the
context of OSEK, the AUTOSAR Classic architecture
refers to these routines as Suspend (OS/All) Interrupts
and Resume (OS/All) Interrupts ; hereinafter, we refer
to these routines as SR-pair. While duration of critical
sections are limited, i.e., minimizing off-time, they are
invoked relatively often, e.g., during OS/application
rescheduling. Thus, the SR-pair should have the short-
est possible runtime to minimize overhead. In some of
today’s automotive systems, the SR-pair is referenced
hundreds of thousands to millions of times, scaling
with application complexity/size. Even assuming that
only a tiny fraction of these calls (∼1-10%) is actually
executed, the SR-pair execution time can notably con-
tribute to the harts workload, as shown in [2] (nearly
30% CPU-load).

Critical Sections: RISC-V ISA Gaps. Consider-
ing a privileged architecture like RISC-V, where the
Machine-mode software is typically kept very mini-
mal, the majority of IRQs are vectored to Supervi-
sor/Hypervisor privilege for further servicing. Tradi-
tionally, if a User-mode task would need to establish a
critical section, it would come at the cost of at least two

RISC-V Summit Europe, Paris, 12-15th May 2025 1



system calls for switching to Supervisor/Hypervisor-
mode, including the corresponding context saving and
restoring. Global IRQ disabling is given by the sstatus
and sie CSRs, while the effective interface for source-
selective disabling is provided by the interrupt architec-
ture. The Advanced Interrupt Architecture (AIA) is
the state-of-the-art reference architecture for interrupt
handling functionality in RISC-V. Source-selective dis-
abling is supported via interrupt files implemented
in the (core-local) IMSIC, providing a minor identity
per IRQ-source (mapped to the respective hart), ulti-
mately determining the preemption scheme’s priority.
The AIA endows each interrupt file within the IMSIC
with a priority-based masking mechanism via a config-
urable threshold for the IRQ presentation. When the
threshold is a nonzero value P, interrupt identities P
and higher (i.e., interrupts with lower priority) do not
contribute to signaling interrupts to the target hart.
However, a key limitation of the AIA, particularly in
the real-time domain, is that User-mode lacks a direct
interface to the IMSIC for disabling/suppressing inter-
rupts when establishing a critical section. Instead, the
software must trap into Supervisor/Hypervisor mode
to access the AIA CSRs, introducing non-negligible
overhead due to context switching.

AIA User Priority Mask

The AIA User Priority Mask Extension is aimed at
giving restrained control to user mode over interrupt
priority to allow user mode applications to disable
interrupts up to a certain priority level in, for exam-
ple, time-sensitive critical sections. We introduce new
CSRs as follows:
User Threshold (ueithreshold). The ueithreshold
CSR is a WLRL register that determines the minimum
interrupt priority (i.e., maximum interrupt identity)
allowing an interrupt to be signaled from the attached
S-mode interrupt file, so that it appears as a pending
external interrupt in bits mip.SEIP and sip.SEIP. uei-
threshold must be capable of holding values between 0
and N, inclusive.
Supervisor-defined Threshold (sminueithresh-
old). The sminueithreshold CSR is a WLRL register
that determines the maximum interrupt priority (i.e.,
minimum interrupt identity) that can be written into
ueithreshold. Independently of sminueithreshold, the
value 0 can always be written to ueithreshold. sminuei-
threshold must be capable of holding values between 0
and N, inclusive. N is reset-value –> Original behavior.
Threshold Computation (ufueithreshold). The
ufueithreshold CSR is a RO register with the final
threshold value used to determine if a pending-and-
enabled S-mode interrupt can be signaled to the at-
tached hart, according to the register values presented

Table 1: Final threshold computation based on ueithresh-
old, min_eithreshold and eithreshold values.

ueithreshold sminueithreshold ufueithreshold

> 0 > 0 min(ueithreshold, eithreshold)
> 0 0 ueithreshold

’dont care’ N eithreshold

in the table 1.
Use-model With the AIA User Priority Mask Ex-
tension, user applications can mask interrupts up to
a certain level defined by the OS. In edge cases, the
OS can set sminueithreshold to N, which means that
the user cannot mask any interrupts (corresponding
to the original behavior), or set sminueithreshold to 0,
enabling the user code to mask all interrupts. When
final threshold is a nonzero value P, interrupt identities
P and higher are not signaled to the hart (as though
those identities were not enabled) regardless of the
settings of their corresponding interrupt-enable bits in
the eie array.

Status, Roadmap, and Conclusion

To date, we have implemented the proposed exten-
sion in a CVA6-based SoC endowed with an Advanced
Interrupt Architecture (AIA) IP [3]. We have also func-
tionally validated the intended behavior by running
a set of low-level benchmarks and micro-operations.
We are now proceeding towards the quantitative eval-
uation, which is two-fold. Firstly, we want to quan-
tify PPA-impact on a reference implementation of the
AIA. From initial estimates, this is considered negli-
gible. Secondly, we are going to quantify the benefit
for real-time performance. For that, we are prepar-
ing a software stack based on the Bao hypervisor [4]
and application benchmarks. Once we complete the
empirical evaluation, we will engage in discussions
among the related RISC-V working groups. We intend
to open-source all artifacts to promote collaboration
within the RISC-V community.

References

[1] RISC-V Advanced Interrupt Architecture (AIA). RISC-V.
Jan. 2025. url: https://github.com/riscv/riscv-aia.

[2] Why AUTOSAR fails so often. 2025. url: https : / /
www.gliwa.com/media/download/15th_aoc_gliwa_why_
autosar_fails_opt.pdf.

[3] Francisco Costa et al. “ Open Source RISC-V Advanced
Interrupt Architecture (AIA) IP ”. In: RISC-V Summit
EU. 2023.

[4] José Martins et al. “Bao: A Lightweight Static Partitioning
Hypervisor for Modern Multi-Core Embedded Systems”.
In: NG-RES Workshop. 2020.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://github.com/riscv/riscv-aia
https://www.gliwa.com/media/download/15th_aoc_gliwa_why_autosar_fails_opt.pdf
https://www.gliwa.com/media/download/15th_aoc_gliwa_why_autosar_fails_opt.pdf
https://www.gliwa.com/media/download/15th_aoc_gliwa_why_autosar_fails_opt.pdf

	Introduction
	RISC-V AIA in a nutshell
	Motivation
	AIA User Priority Mask
	Status, Roadmap, and Conclusion

