
Reliable Hardware Trojan Formal Verification
Czea Sie Chuah1, Christian Appold2∗ and Tim Leinmüller2

1 Technical University of Munich, Germany
2DENSO AUTOMOTIVE Deutschland GmbH, Germany

Abstract

Due to cost and time reasons, hardware development is currently often done using IP of external vendors and
outsourcing of fabrication to third parties. The globalization of the hardware supply chain, which is inherent in
the RISC-V ecosystem, increases the risk of malicious insertions of Hardware Trojans (HTs) into the design.
HTs are malicious modifications of hardware to change functionality or to leak secret data. Especially in safety-
and security-critical areas like autonomous driving, HTs can cause severe consequences and even endanger
human lifes. We research how model checking based formal verification can be used in a systematic way to
detect each HT inserted during hardware design reliably. We are the first to use signal connection properties on
top of design functionality properties for more reliable HT detection. To reduce verification time and strongly
increase HT detection coverage, we developed a tool to generate a high number of properties fully automatically.
Additionally, we will publish a large set of specification and microarchitecture intent derived properties important
for HT detection in processors and show how these properties have to be combined with connection properties for
HT detection. Our work results in a guideline for reliable HT detection in processors using formal verification.

Introduction
Over the past decades, hardware security vulnerabili-
ties have raised concerns, especially in critical applica-
tions like autonomous driving and factory automation.
Hardware Trojans (HTs) are malicious modifications
of hardware that cause undesired behavior. Outsourc-
ing hardware design and manufacturing have increased
the risk of HTs, particularly in processors. They are
vulnerable and widely used in various devices. With
the rise of processors with open RISC-V ISA, the risk
of HTs is even higher, as ISA accessibility makes it
easier to find and exploit security vulnerabilities.

Formal verification techniques for HT detection have
been researched in recent years [1, 2]. However, most
of these methods require significant manual effort and
lack automation [3, 4]. This limits their scalability
and effectiveness resulting in low detection coverage.
In [5] security assertions are automatically generated
and example HTs detected, but they don’t target reli-
ably detecting each inserted HT. Our approach offers
greater automation and saves time. HT detection
coverage is improved by introducing the use of signal
connection properties. We will present key design in-
tent properties to safeguard RISC-V processors from
HTs and provide guidelines for combining these prop-
erties with connection properties. To demonstrate the
completeness of the property set for HT detection, we
developed a generic HT model and write the HT detec-
tion properties that each generic HT is detected. The
property set can be created during hardware design
and used by processor vendors to implement reliable
HT formal verification. IP vendors can deliver the
properties with IP, enhancing security of the IP.
∗Corresponding author: c.appold@eu.denso.com

Methodology
In this work we present an approach enabling detection
of each inserted HT for targeted processor constituents
which we protect with our properties. For this, we use
a combination of two types of properties:

1. Design Intent Properties: Derived from spec-
ification and microarchitecture intent. Used to
verify implemented design functionality, for which
being HT-free is essential. The properties must
be written to verify corresponding functionality
exhaustively for each signal value change and also
when a signal should stay stable. As an example,
for the Program Counter (PC) we use the follow-
ing property for each possible condition to set it:
assert property (@(posedge clk)
writeWbPipelineReg && conditionPCSetting
|-> ##1 wbRegInstPC == desiredCondPC)

2. Connection Properties: These are properties
proving pure signal connections with or without
a storage element in between are free of inserted
HTs. Our work is the first proposing signal con-
nection verification for HT detection. In the fol-
lowing is an example property for a direct signal
connection from the PC in instruction queue to
memory without storage element in between:
assert property (@(posedge clk)
instQueuePC==memOutPC)

For HT formal verification, design intent properties
alone are insufficient. Using only them for proving
proper PC setting does not ensure the PC is as desired
after the position where the PC signal value is proven.
For example the PC could be compromised on its way
to instruction memory. Also, the PC immediate in
the instruction word coming from memory could be
modified in the pipeline. Hence, to prove HT absence

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:c.appold@eu.denso.com


without detection gaps, we recommend additional use
of connection properties. Proper combination and
connection of both property types enables reliable HT
detection. The approach works for arbitrary hardware
designs, but we focus on HT detection in processors.

We research a comprehensive property set for gap-
free HT verification combining our two property types
and are the first to suggest using formal verification
also to verify the completeness of a property set for
reliable HT detection. For this, we developed a generic
HT model able to model an arbitrary HT modifying
signal values. The HT model uses a new free input
(TROJ_input) into the hardware design. During verifi-
cation the formal verification tool assigns each possible
value to this input in each hardware state. Our generic
HT modifying an example signal sig1 looks as follows:
assign sig1_mod = sig1 XOR TROJ_input
With this, the signal sig1_mod is modified in each
state of the hardware with every possible arbitrary
value during verification and used instead of the signal
sig1 in the design. In formal verification we use dedi-
cated properties to ensure every possible triggered HT,
modeled through our generic HT model at different
positions in the processor, is detected through our
property set. This allows us to prove each possible
inserted HT is detected through the property set.

Figure 1: HT detection property generation approach

Property Generation
Reliable HT detection requires a large number of prop-
erties. We implemented an automatic property genera-
tion tool to speed up HT detection using our approach.
The inputs needed for our tool are the hardware design,
user-defined connection and design intent properties,
and waivers for false auto-generated properties (see
Figure 1). Hardware designs typically have a large
number of signal connections. Our tool fully automati-
cally generates connection properties for all signal con-
nections between input and output ports of modules
without intermediate logic or storage elements in be-
tween only from hardware design in RTL. This is done
for all modules and submodules, which significantly
increases coverage of design parts verified for HT in-
sertion, enabling detection of all inserted HTs in those
connections through formal verification with gener-
ated properties. Tool outputs are fully auto-generated
connection properties not disabled by waivers and user-
defined connection and design intent properties, all in
SystemVerilog Assertions (SVA).

Results and Conclusion
In this work we develop an approach for reliable HT
detection using formal verification. We implemented
an automated property generation tool and are the
first to incorporate connection property checks into
HT verification. Our tool automatically generates a
large number of connection properties, allowing the
corresponding signal connections to be easily verified
for HT insertion absence. We propose applying this
automated connection checking approach as a general
security rule for HT absence in hardware designs. Ad-
ditionally, we have developed significant parts of the
necessary user-defined properties for reliable HT detec-
tion in PC and privilege mode processor constituents,
and will continue to expand the property set until it
provides full protection against HTs.

The work is executed on a 32-bit 4-stage pipeline
RISC-V processor. For our formal verification exper-
iments, the tool Cadence Jasper Formal Verification
Platform [6] is used. All our design intent properties
could be proven in below 24 hours. From the RTL
code of our processor, our tool generated roughly 1500
connection properties fully automated. Verification ex-
periments show that the runtime of formal verification
is below a minute for connection properties. Some of
the properties to prove arbitrary HT detection capabil-
ity by our properties are proven in below 24 hours. For
the rest, we intend to apply advanced proof techniques
to reduce them below 24 hours runtime. The experi-
mental results confirm our approach is promising for
scalable reliable HT detection. In future we aim to
present a comprehensive property set for processors,
to verify key design constituents for HT absence and
ensure suitability of our property set for reliable HT
detection using our generic HT modeling.

References

[1] M. Rathmair, F. Schupfer, and C. Krieg. “Applied formal
methods for hardware Trojan detection”. In: Int. Symp. on
Circuits and Systems (ISCAS). 2014.

[2] B. Mainak and M. S. Hsiao. “Trusted RTL: Trojan detec-
tion methodology in pre-silicon designs”. In: HOST. 2010.

[3] R. Jeyavijayan, V. Vivekananda, and K. Ramesh. “Detect-
ing malicious modifications of data in third-party intellec-
tual property cores”. In: DAC. 2015, pp. 1–6.

[4] X. Zhang and T. Mohammad. “Case study: Detecting
hardware Trojans in third-party digital IP cores”. In: Int.
Symp. on Hardware-Oriented Security and Trust. 2011.

[5] M. R. H. Iman et al. “Processor Vulnerability Detection
with the Aid of Assertions: RISC-V Case Study”. In: Nordic
Circuits and Systems Conf. (NorCAS). 2024, pp. 1–7.

[6] Jasper RTL Apps | Cadence Design Systems. 2025. url:
https : / / www . cadence . com / en % 5C _ US / home / tools /
system-design-and-verification/formal-and-static-
verification/jasper-verification-platform.html.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://www.cadence.com/en%5C_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en%5C_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en%5C_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html

	Introduction
	Methodology
	Property Generation
	Results and Conclusion

