
A Fine-Grained Dynamic Partitioning Against
Cache-Based Timing Attacks via Cache Locking
Nicolas Gaudin1, Jeremy Guillaume1, Pascal Cotret2, Gogniat Guy1 and Vianney Lapotre1

1UMR 6285, Lab-STICC, Univ. Bretagne-Sud, Lorient, France
2UMR 6285, Lab-STICC, ENSTA Bretagne, Brest, France

Abstract

Cache-based timing side-channel attacks represent a security threat for both high-end and embedded processors.
As countermeasure to these attacks, previous works intoduced the lock and unlock instructions allowing a program
to ensure constant-time accesses to cache. However, their implementation was still subject to cache-based attacks.
In this paper, we propose a new implementation of these instructions, and experimentally demonstrate that our
proposed solution defeats contention-based cache side-channel attacks such as Prime+Probe, while leading to a
low impact on area overhead and performance efficiency of processes.

Introduction

Cache-based timing side-channel attacks such as
Prime+Probe make it possible to retrieve confidential
data, e.g., a secret cryptographic key. Numerous coun-
termeasures have been proposed in the literature to
thwart these attacks. From the hardware side, there
are two main strategies. The first one, called cache
randomization, consists in randomizing the address
indexing in the cache to prevent the attacker from
performing the Probe attack phase. However, data
recovery is still possible with a suitable attack like
Prime+Prune+Probe. The solution would be to peri-
odically update the randomization, but this operation
costs performance since it invalidates the whole cache.

The second strategy is cache partitioning, which
consists in isolating the cache resources used by the
victim from the ones used by other (potentially attack-
ing) processes. Proposed solutions for partitioning,
such as NOMO-CACHE, significantly reduce perfor-
mance of other running processes, since they allocate
a set of ways to sensitive applications. To remove
this limitation, PLcache [1] has been proposed as a
lightweight partitioning mechanism. It relies on a
hardware-software collaboration by integrating two
new instructions lock and unlock, enabling a victim
to lock its data present in cache, and prevent it from
being evicted by an attacker, or any other process.

PLcache reduces the impact on performance, how-
ever, the LRU state of locked data is still updated
during memory access from any process. Additionally,
in case a locked data is also the oldest data in a cache
line, it can still be evicted during a memory access of
the victim process itself. It has been demonstrated
that these two characteristics keep this solution vul-
nerable to cache attacks [2]. Therefore, this paper
1) proposes new definitions of the lock and unlock
instructions that remove these vulnerabilities, and 2)

evaluates the impact of this countermeasure on perfor-
mance. This study is done on the CV32E40P, which is
a 4-stage in-order 32-bit RISC-V mono-core processor,
including a single level of cache.

Proposed countermeasure

Our countermeasure against cache-based timing at-
tacks is based on the concept of lock/unlock instruc-
tions proposed by PLcache [1], with the addition of a
new LRU update mechanism whose diagram is shown
in Fig. 1.

As illustrated in Fig. 2, calling the lock instruction
has the same effect as calling the load instruction,
with the addition of the LRU state of locked data
being set to 0 (update LRU locking in Fig. 1). At each
memory access, the cache ways with LRU state equal
to 0 remain unchanged (no update LRU ). Therefore,
they are not considered to be evicted by the LRU way
selection. At least not until they are unlocked and
their LRU state is set back to a value different from 0

(update LRU unlocking).
To ensure minimum performance, at least one way

always remains unlocked. If a request to lock the last
way is received, an exception is raised.

Figure 1: Cache access procedure with locking mechanism.

RISC-V Summit Europe, Paris, 12-15th May 2025 1



Figure 2: Use-case: Behavior of LRU states considering
our lock mechanism with N =4 ways.

Impact on security

In this section, the impact of our countermeasure
against the Prime+Probe attack targeting AES-128
is evaluated. It is assumed the attacker knows the
binary of the program executed by the victim, the
plaintext value and targets the value of the secret key.
The attack consists in identifying which indexes of the
Sbox table the victim has accessed, since these ones
depend on the value of the secret key bytes.

Fig. 3 shows the results of the Probe phase of the
attack against the first key byte, (a) & (b) without
and (c) with the locking mechanism. The darker the
square is, the more time it takes for the attacker to
access the data since the victim has evicted it from the
cache (cache miss). Results highlight that the attacker
cannot observe any difference in time to access the
locked data, ensuring security against cache attacks.

Impact on performance

The proposed locking mechanism protects against
cache attacks, but it is important to ensure it does
not come with a significant reduction in performance.
Thus, its impact is evaluated both on implementation
overheads and on the loss of process performance due
to cache contention caused by the locked ways.

Table 1 compares the resource needed, with and
without the countermeasures, for both the Cache and
CPU, on a Xilinx Kintex-7 chip with Vivado 2022.2.
The overall overhead is lower than 3%.

Fig. 4 shows the performance of a list of processes
(the Embench-IoT 1.0 suite) according to the number
of caches lines that are entirely locked (3 ways out of
4 per line). The vertical blue and red dotted lines rep-
resent, respectively, the number of cache lines locked
by a protected software implementation of the AES-
128 and Camellia cryptographic processes. It can be

Figure 3: Prime+Probe attack against AES-128 S-Box.
Key = 0x42.

Table 1: Post-implementation area on Kintex-7 FPGA.

Cache CPU

LUTs 980 5, 661

Baseline FFs 1, 065 3, 465

BRAMs 8.5 8.5

LUTs 1, 007 (+2.8%) 5, 683 (+0.7%)
Protected FFs 1, 077 (+1.1%) 3, 481 (+0.3%)

BRAMs 8.5 8.5

Figure 4: Performance efficiency results.

observed that the AES does not significantly impact
processes performance, while Camellia, which requires
to lock a higher number of cache lines, impacts a few
processes. However, even in the worst-case scenario,
performance remains close to 90% of initial values.

Conclusion and perspectives

In this paper, we proposed a fine-grained partitioning
relying on a cache locking mechanism to thwart cache-
based timing attacks, without significantly impacting
processor performance.

As future works, we aim to study this countermea-
sure on a more complex processor such as the CVA6,
with an OS running on it. Also, in the presence of an
out-of-order processor, cases where unlock instructions
are executed speculatively should be considered. Fur-
thermore, this countermeasure does not protect against
attacks such as Meltdown or Spectre. To overcome
this limitation, we could investigate the combination of
this countermeasure with others, like randomization.

References

[1] Zhenghong Wang and Ruby B Lee. “New cache designs for
thwarting software cache-based side channel attacks”. In:
Proceedings of the 34th annual international symposium
on Computer architecture. 2007.

[2] Nicolas Gaudin et al. “Work in Progress: Thwarting Timing
Attacks in Microcontrollers using Fine-grained Hardware
Protections”. In: 2023 IEEE European Symposium on Se-
curity and Privacy Workshops (EuroS&PW). IEEE. 2023.

2 RISC-V Summit Europe, Paris, 12-15th May 2025


	Introduction
	Proposed countermeasure
	Impact on security
	Impact on performance
	Conclusion and perspectives

