Side-channel attack hardware detection module added to RISC-V core

Juliette Pottier¹, Bertrand Le Gal², Maria Méndez Real³, Sébastien Pillement¹

¹IETR, Nantes Université, Nantes, France

²IRISA/INRIA, Université de Rennes, Lannion, France

³Lab-STICC, Université de Bretagne Sud, Lorient, France

Context: SEC-V project

Contact: juliette.pottier@univ-nantes.fr Convention: ANR-21-CE-39-0017

WP 1 – Dynamic code transformation unit On-the-fly decoding modification/alteration Dynamic instrumentation Instruction set tailoring/customization/adaptation

WP 2 – Micro-architectural modifications

Alternative approaches to traditional caches (scratchpads, TCM) Dynamic cache management

Inserting execution noise (access instructions for example)

WP 3 – Dynamic control of the architecture adaptation

Detection of abnormal behavior

Dynamic code transformation unit control

WP 4 – Prototype and evaluation

Inclusion in the CVA6 core of the OpenHW Group Assessment (indicators and metrics) of security levels

Decoded Instr. --> <-- Instr. ACK PTW <-- Instr. ACK DTLB ITLB Issue Entry ommit Instr. Commit xception --> Logic SR Data --> Compressed CSR Buffer Regfile <-- RF Enable <-- Commit Ack C SR Write RAS <-- Commit CSF Mul / Div <-- Commit Stor втв epc --> Branch Unit Scoreboard mtvec --> ерс --To/From Commit Branch Privilege Check Decoder Exception Mispredict from MMU Valid ---Interrupt Select from Decoder Controller Backend

CVA6 enhanced with a µ-decoding unit

- CVA6's Features [1]:
 - ISA: RV64GC

Detection module

- Novel approach to monitore HPCs decdicated to sidechannel detection
- 6-stage pipeline partially out-of-order (Execute Stage)
- Single issue

Detection module Features:

- FSM: Bypass/Microdecoding state Ο
- ROM: contains 32-bit microinstructions sequences
- FIFO: interfaces with the Issue stage
- 5 internal registers dedicated to temporary data storage

Hardware cost evalution:

	LUT	SRL	\mathbf{FF}	BRAM36
Baseline	47453	0	24764	36
Enhanced core	49518 + 4.3%	0 -	25636 + 3.5%	38 + 5.5%

Hardware approach \rightarrow low timing overhead

Application name	Overhead (%)
ARC4 enc./dec.	+0.85%
AES v1 (128/512) enc./dec.	+0.01%
AES v2 (128 from [23]) enc./dec.	+0.05%
Engine control	+0.06%
Data sorting (bubble)	+0.06%
Queens	+0.01%
Pattern matching (text)	+0.01%
LMS filter processing	+0.01%
FIR filter processing	+0.01%
Echo cancellation	+0.06%
Motion detection	+0.01%
Contrast egalization	+0.04%
Dhrystone	+0.09%

Monitoring : detection of contexts favorable to side-channel attacks and/or covert channels

- Dynamic management : micro-architectural defenses and microdecoder
- Deployment of a complete solution from detection to countermeasure on target, while preserving performance

[1] 1F. Zaruba and L. Benini. The cost of application-class processing: Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(11):2629–2640, Nov 2019.

[2] V. Martinoli, E. Tourneur, Y. Teglia, and R. Leveugle. CCALK: (When) CVA6 Cache Associativity Leaks the Key. Journal of Low Power Electronics and Applications, 2022.

[3] L. Gerlach, D. Weber, R. Zhang, and M. Schwarz. 2023. A security RISC: microarchitectural attacks on hardware RISC-V CPUs. IEEE Symposium on Security and Privacy (SP) (2023).

Side-channel attacks [2-3] detection accuracy

Load conditions	Test performed	FP	FN	Accuracy
No noise	-	0.09%	0%	100%
1 noisy app	Random app	0.14%	0%	100 %
	Worst case	0.21%	0%	100 %
2 noisy apps	Random apps	2.70%	0%	100 <i>%</i>
	Worst case	0.33%	0.02%	99.98 <i>%</i>
4 noisy apps	Random apps	5.10%	0%	100%
	Worst case	0.35%	0.80%	99.2%

Security strategies:

