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Abstract

In this paper, we propose CIAMH, a hardware countermeasure that ensures the confidentiality, integrity and
authenticity of data from DRAM to CPU registers, via L1D and L1I cache memories. Data confidentiality is
ensured through encryption in DRAM and masking in caches. Integrity is guaranteed by associating integrity tags
with data and by checking these tags at each level of the hierarchy to detect data corruption. The authentication of
data is facilitated by authenticated encryption in DRAM and by the presence of integrity tags that are dependent
on a unique key. These mechanisms have been designed to mitigate attacks such as RowHammer, fault injection
and side-channel attacks throughout the memory hierarchy. The CIAMH has been implemented in relation to
the NaxRiscv core, thus enabling it to be modular for the user. The RTL generated can easily incorporate part
or all of the countermeasure, depending on the specific use case.

Introduction

In recent decades, there has been a considerable en-
hancement in the performance of processors. Never-
theless, the memory hierarchy has come to the fore as
a pivotal bottleneck within the architecture, thereby
impeding progress. Ensuring the security of this hi-
erarchy poses a significant challenge, as any counter-
measure that introduces even a minimal latency would
result in a substantial loss of system performance.

In order to minimise the overhead, while guarantee-
ing a chain of trust for the data, several technological
choices have been made and will be presented in a
first step. The changes made to the architecture of
the memory hierarchy will also be presented. The
subsequent presentation will then cover the implemen-
tation of the architecture with a 64-bit RISC-V core,
its modularity, and the corner cases that must be
managed.

CIAMH Architecture

In accordance with the memory hierarchy, the pro-
posed countermeasure involves the encryption and
authentication of the DRAM, the masking of data in
the L1 cache, and the association of an integrity tag
with it. The registers are then masked, and a register
file is added for the masks.Beyond DRAM, the decision
is taken to mask rather than encrypt, with the aim of
minimising the impact on memory access latency.

To traverse between these memory levels, modules
are incorporated to oversee encryption, masking, and
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Figure 1: CIAMH Architecture

the calculation of the various integrity tags (figure 1).
These modules also verify the integrity and authentic-
ity of memory transactions and initiate an alert in the
event of corrupted data.

MAEE The first module is the Memory Authenti-
cated Encryption Engine[1].

Write : MAEE unmasks and encrypts the cache
lines, then associates a MAC (Message Authentica-
tion Code) with them. In order to limit the latency
overhead, a lightweight authenticated encryption algo-
rithm is employed, namely Subterranean 2.0[2]. The
words on the cache line are unmasked and encrypted
as they arrive, one by one, in the MAEE.

Read : The cache line originating from the DRAM
is decrypted and subsequently masked. For each
word, an integrity tag is calculated in parallel and
also masked. Finally, at the conclusion of the process,
the MAC is checked.

The transition between encrypted and masked data
is made without revealing the data in plaintext, thus
avoiding any breach of confidentiality.

MIU The Masking and Integrity Unit (MIU) in the
MAEE is responsible for generating masking and in-
tegrity tags. The MIU generates two masks (data and
tag masks) by utilising a secret key, the address of
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Figure 2: Masked cache line (16 * 64-bit data) with
integrity tags and metadata

the data, its ASID1, a ptr_id2, and an IV3 as inputs.
If only the IV changes, biased masks will be gener-
ated. However, Talaki et al.[3] have demonstrated
that the masks generated leak low mutual information
from side channel traces in the noisy environment of a
processor.

In the context of integrity tags, a homomorphic per-
mutation function is employed. This function involves
the permutation of data d according to a key α, re-
sulting in the generation of its tag pα(d). It should
be noted that the alpha key is unique to each user,
thereby ensuring both authenticity and integrity.

Furthermore, a distinct key is utilised on both the
CPU and the cache sides, with the objective of differ-
entiating the integrity of these two components. The
key is changed, and the integrity is verified in the
MIUs at the interface.

In order to reduce memory overhead, masks are
not stored in the cache, the integrity tag stored is
compressed (32-bit MSB xor 32-bit LSB), and only
the metadata needed by the MIU is cached (figure 2).
MIU modules between caches (L1I and L1D) and the
CPU are required in order to recalculate masks and
tags.The masks change with each store as the IV is
updated.

Finally, the CPU stores the masked data, its mask,
the masked integrity tag and its mask in these reg-
isters.The masked data can then potentially be pro-
cessed by a masked ALU.

Implementation

In order to evaluate the CIAMH countermeasure, a
decision was taken to combine it with the RISC-V
core, NaxRiscv. The rationale behind this choice was
the modularity of its architecture, a feature facilitated
by the SpinalHDL language.

However, the implementation process was accompa-
nied by the emergence of numerous challenges, neces-
sitating modifications to the countermeasure.

Initialisation At the initiation of the boot sequence,
the DRAM must be initialised with encrypted data and
their MACs; however, the data is located in the Flash
memory.A firmware in the bootloader will then copy
the data to the DRAM.The data is first transferred
from the Flash memory to the CPU with uncached
loads, and subsequently stored in the cache and then

1 Address Space Identifier
2 Optionally used for memory tagging purpose
3 Initialisation Vector

Figure 3: Data masked in cache (64 bits) after modifica-
tion of a part following a store

in the DRAM when cache lines are evicted, passing
through the various modules (MIU, MAEE).

However, as we are using a write-back cache (write-
allocate), to make a cached store, we first need to
load the line. Nonetheless, upon loading the line, the
MAEE will detect an incorrect MAC, as the DRAM
remains uninitialised. Consequently, while the cache
line is loaded, it is initialised to 0 ⊕m1. Thereafter,
the line becomes available for stores.

Byte, Half and Word Store As the mask under-
goes modification with each store, a problem arises
when a 64-bit masked data item is not stored in its
entirety. The CPU then transmits the part to be mod-
ified (byte, half or word) to the cache. This part is
masked with a new mask. However, the remaining
unmodified double word must have its mask updated
with the new mask using transmasking (figure 3). A
similar but more complex mechanism is also in place
to manage the updating of integrity tags.

Modularity The modularity of the architecture en-
ables users to select the protection of DRAM and/or
caches according to their specific use cases. The SoC
is generated automatically, with just the modules and
modifications required, depending on two parameters:
withMIU and withEncryption.

Performance CIAMH was synthesised using Yosys
for Xilinx, associated with NaxRiscv and a L1 cache.
The overhead in LUT is as follows: 1.4% for the MAEE
alone, 63.5% for the MIU alone, and 66.7% with the
two countermeasures. Furthermore, a flip-flop over-
head of 0.4% is observed for the MAEE alone, 54.1%
for the MIU alone, and 55% with the two counter-
measures. The MIU countermeasure exerts the most
significant influence on the SoC, by augmenting the
logic and memory from the core to the caches.

Perspectives In the future, further obstacles must
be surmounted, including the management of atomic
operations, in order to ensure the functionality of a sys-
tem running Linux. A security analysis on FPGAs and
ASICs is also required to ascertain whether CIAMH
can mitigate the aforementioned attacks, including
side-channel attacks.
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