

KARIM AIT LAHSSAINE UNIV. GRENOBLE ALPES CEA, LETI **F-38000 GRENOBLE, FRANCE** KARIM.AITLAHSSAINE@CEA.FR

Cez

OLIVIER SAVRY UNIV. GRENOBLE ALPES CEA, LETI **F-38000 GRENOBLE, FRANCE** OLIVIER.SAVRY@CEA.FR

Objectives

Guarantee a chain of trust for data from RAM to CPU registers

Confidentiality : Ensured through encryption in DRAM and masking in caches

Integrity : Guaranteed by associating integrity tags with data and by checking these tags at each level of the hierarchy to detect data corruption

Authentication : Facilitated by authenticated encryption in DRAM and by the presence of integrity tags that are dependent on a unique key

Authenticated Encryption

Different α keys ($\alpha_{CACHE}, \alpha_{CPU}$) are used between the CPU and the cache to isolate

the two domains and verify integrity and authenticity at the interface.

Modularity

The modularity of the architecture enables users to select the protection of DRAM and/or caches according to their specific use cases, depending on two parameters :

- withMIU
- withEncryption

References

1 Karim Ait Lahssaine and Olivier Savry. "Memory Authenticated Encryption Engine for a RISC-V processor". In: RISC-V Summit Europe (June 2023) 2 Joan Daemen et al. "The Subterranean 2.0 Cipher Suite". In: IACR Transactions on Symmetric Cryptology 2020.S1 (June 2020), pp. 262–294

3 NaxRiscv Project : https://github.com/SpinalHDL/NaxRiscv

$plpha_{CACHE_{Reduced}}(d \oplus mask_2)$	valid_Palpha mask1	$d \oplus mask_1$
		IIIdSK ₁

Synthesised using Yosys for Xilinx associated with NaxRiscv[3] and a L1 cache

	SoC LUTs (overhead)	SoC FFs (overhead)
With MAEE alone	1,4%	0,4 %
With MIU alone	63,5 %	54,1 %
With MAEE + MIU	66,7 %	55 %