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Abstract

The emergence of quantum computing threatens traditional cryptographic schemes, requiring the development of
post-quantum algorithms. This paper accelerates Module Lattice Key Encapsulation Mechanisms (ML-KEM) and
Digital Signature Algorithms (ML-DSA), the two primary NIST standards, on the Sargantana RV64GBV core
using standard RISC-V bit manipulation (B) and vector (V) extensions. We compare reference implementations
against optimized assembly routines and vector and bit manipulation compiler-generated code. Hand-optimized
results show BV extensions yield speedups between 3.18–4.59× for ML-KEM and ML-DSA. Without BV
extensions, achieve between 2.73-3.29× speedup. Compiler-generated code lags behind hand-optimized kernels,
with bit manipulation outperforming auto-vectorization.

Introduction

Digital communication underpins modern society,
enabling critical information exchanges where data
integrity and confidentiality are essential. How-
ever, advances in quantum computing algorithms
threaten the security of existing public-key cryptogra-
phy schemes [1].

In response, the National Institute of Standards
and Technology (NIST) has undertaken a global initia-
tive to standardize public-key cryptography schemes
that can withstand attacks from large-scale quantum
computers. Among these, Module Lattice Key Encap-
sulation Mechanism (ML-KEM) and Module Lattice
Digital Signature Algorithm (ML-DSA) have garnered
significant attention, and many accelerated implemen-
tations have been proposed [2]. While the focus has
been on custom RISC-V ISA extensions [3], recent
studies highlight the potential efficiency gains achiev-
able using standard RISC-V bit manipulation (B) and
vector (V) extensions [4]. Our work characterizes the
performance of ML-KEM and ML-DSA reference im-
plementation and hand-optimized version exploiting
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the BV extensions on the Sargantana [5] RV64GBV
core. Then, we measure the performance gap between
hand-tuned and compiler-emitted code when compil-
ing the reference implementation provided by NIST
with the BV extensions activated.

Methodologies

The ML-KEM and ML-DSA schemes run on Sargan-
tana, a single-issue in-order core that implements the
RV64GBV ISA. It features a 7-stage pipeline with
out-of-order writeback, register renaming, and a non-
blocking memory unit. Sargantana also contains a
128-bit wide SIMD unit supporting RISC-V Vector
Extension (RVV) version 1.0, except for LMUL>1 con-
figurations and vector floating-point instructions. The
register renaming also includes the vector configura-
tion setting instructions (vset{i}vl{i}), leading to
a reduced impact on performance.

ML-KEM and ML-DSA serve different purposes but
share most computational primitives:

• Keccak: Used for polynomial sampling. It relies
on SHA-3 primitives built on the Keccak-f1600
permutation function. Keccak represents >50%
of the ML-KEM and ML-DSA execution cycles.
The bit manipulation (B) extension enhances per-
formance by reducing multiple instructions into a
single one.

• Number Theoretic Transform (NTT): NTT
uses butterfly operations to mix elements and
apply modular arithmetic for polynomial multi-
plication. Vectorization enhances efficiency by
executing multiple iterations simultaneously.
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Figure 1: ML-KEM speedup over the NIST baseline compiled for RV64G

Figure 2: ML-DSA speedup over the NIST baseline compiled for RV64G

Results and Discussion

The PQC schemes are executed on an Alveo U55c
FPGA running at a 25 MHz clock frequency.

Benchmarks are compiled using GCC 14.2, lever-
aging RISC-V auto-vectorization and auto-bit manip-
ulation. For the comparison, we also execute hand-
optimized code from [4], with modifications to the vec-
tor code to meet the LMUL ≤ 1 hardware constraint.
Figures 1 and 2 show the speedup performance against
the NIST RV64G reference cycles for all ML-KEM
and ML-DSA security levels.

For each level, six configurations are tested:

1. Auto-Vector No Renaming (AutoVecNR):
The vsetvl instruction flushes the pipeline.

2. Auto-Vector with Renaming (AutoVecR):
The vsetvl instr. does not flush the pipeline.

3. Auto-Bit Manipulation (AutoBitMan):
Compiler-inserted bit manipulation instructions.

4. Optimized Scalar Code (OptScalar): Hand-
optimized scalar code from Zhang et al. [4].

5. Hand-Based Bit Manipulation Optimiza-
tion (HandBitMan): Manual bit manipulation
optimizations from Zhang et al. [4].

6. Hand-Based Vector Opt. (HandVec): Man-
ually optimized vector code from Zhang et al. [4].

Our results show similar speedups across all secu-
rity levels. The hand-optimized RV64IM implemen-
tation of ML-KEM and ML-DSA achieves 2.73-3.29×
speedups without BV extensions. Hand-optimized vec-
torization yields gains of up to 3.33-4.59×, significantly
outperforming automatic vectorization (0.98-1.08×).
Manual bit manipulation optimizations improve per-
formance, achieving 2.91-3.81× speedups, outperform-

ing compiler-inserted instructions (1.28-1.68×). In
addition, optimizing Keccak with compiler-inserted
bit manipulation proves to be more effective than
auto-vectorized NTT. While register renaming slightly
improves auto-vectorization (∼ 0.02×), it remains far
from the efficiency of manual optimizations.

In conclusion, the obtained results highlight two
main facts. First, compiler automatic optimization
provides significantly worse results than carefully hand-
optimized code, which outperforms ML-KEM and ML-
DSA performance even when BV extensions are ac-
tivated. Paying the cost of integrating BV standard
extensions in the RISC-V core provides extra speedup
only if such extensions are exploited manually, ranging
from 21.5% (Verify, Dil-5) to 84.3% (Decapsulation,
k768) over-optimized scalar code.
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