
Agile Formal Verification with Symbolic Quick Error Detection by Semantically

Equivalent Program Execution
1Yufeng Li, 2Qiusong Yang, 2Yiwei Ci, 2,3Enyuan Tian, 1Yungang Bao, 1Kan Shi crazybinary494@gmail.com, {qiusong, yiwei}@iscas.ac.cn, tianenyuan@nfs.iscas.ac.cn, {baoyg, shikan}@ict.ac.cn
1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; 2Institute of Software, Chinese Academy of Sciences, Beijing, China; 3University of Chinese Academy of Sciences, Beijing, China

1. Introduction
Processor verification is hard

• Highly complex microarchitectural optimizations

• Simulation inadequate

• Formal verification

– Requires manual specify all desired properties

– Requires in-depth microarchitectural knowledge

– Requires high verification expertise

– Time-consuming and error-prone

• Consumes ≥ 50% of design effort, yet only 24% of projects were
able to achieve first silicon success

–Modern processor designs have become substantially more
complex, while supply chain challenges, including global com-
petition and geopolitical risks, have shortened development
timelines, thereby creating an urgent demand for innovative
verification methodologies

Percentage of verification effort in development Required number of spins

Figure 1: Wilson Research Group Study Results

2. Formal Verification Trans-
formation: Symbolic Quick
Error Detection (SQED)

QED (Quick Error Detection) + BMC (Bounded Model Checking):

• QED is a technique that converts original tests into QED family
tests:

Figure 2: QED

– Partition processors’ “locations” (memory, registers) into origi-
nal andduplicate spaces,withaone-to-one correspondencebe-
tween them

– Each original instruction is paired with a duplicate, operating
on separate halves of the space

–During testing, a functionally correct processor transitions be-
tween QED-consistent states, where values in the original and
duplicate spaces are identical

• BMC tool automatically explores all valid symbolic original in-
structions

• TheQEDmodule in the pipeline’s fetch stage transforms the orig-
inal instruction into a duplicate and dispatches them into the
pipeline

• self-consistencyuniversal property: QED-ready ⇒ QED-consistent

Figure 3: SQED-based formal verification

Superior:

• Automatic

–Only a universal property to check - self-consistency

– Independent of microarchitectural details

– Requires lowmanual effort and low formal expertise

• Robust

– Symbolically enumerates all programs up to n instructions

• Quick

– Finds the shortest possible bug trace from an initial state

• Agile

– 60X productivity

• Effective (vs. Traditional methods)

– 100X reduction in time

– 106X reduction in bug trace length

3. Limitations of Current Re-
search

Logic bugs in a processor can be categorized as:

• Single-instruction bugs

– It depends on the specific opcode and operands, independent
of program context

– Activating the bug and propagating it to program-visible states
occur within a single instruction

•Multiple-instruction bugs

– Program context is relevant

– A sequence activates the bug, and then an instruction propa-
gates it to program-visible states

Figure 4: Logic bug type

SQED cannot detect single-instruction bugs‼!

• Single-instruction bugs affect original and duplicate instructions
in a QED test in the same way

–Original and duplicate registers always hold the same value,
thus maintaining self-consistency

Original mode

// regs[1] = 0x4
// regs[2] = 0x2
// regs[3] = 0x0
// regs[4] = 0x0
// regs[5] = 0x6
// regs[6] = 0xffff

// regs[17] = 0x4
// regs[18] = 0x2
// regs[19] = 0x0
// regs[20] = 0x0
// regs[21] = 0x6
// regs[22] = 0xffff

Duplicate mode

Figure 5: False positive of self-consistency verification

– Insufficient detection of all types of logic bug

* Broad operand range impairs simulation

*Non-universal formal properties are dependent on microar-
chitectural details

4. Contribution
• Generalized self-consistency universal property

– Single-instruction bugs unevenly impact original and semanti-
cally equivalent instructions

Figure 6: Insight

– Correct processor execution of both original and semantically
equivalent instruction sequences should result in consistent ar-
chitectural states

Original Instruction Formal Semantic

Component Formal Semantic ...
1Multiset Multisetn

Original Instruction:

 SUB rd rs1 rs2

Equivalent Program:

 XORI t1 rs1 0xfff

ADD t2 t1 rs2

 XORI rd t2 0xfff

QED Module：
EDSEP-V

Transformation

DUV

Model Checker

Bug Trace

QED Module：
EDSEP-V

Transformation

DUV

HPF-CEGIS

Intermediate

Format

Synthesis

Processor Verification with SEPE-SQED

Figure 7: SEPE-SQED

• Counterexample-Guided Inductive Synthesis based on the High-
est Priority First (HPF-CEGIS)

–Using heuristic synthesis to find instruction sequences seman-
tically equivalent to the original instructions

* Prioritize selecting instructions that are semantically close to
the original instruction as synthesis elements

*Dynamically adjust priorities based on feedbackmechanisms

Figure 8: HPF-CEGIS

5. Evaluation
• SEPE-SQED detected all injected logic bugs

• Exhibiting shorter bug detection time and bug trace length for
some bugs

Single-instruction bugs detection Multiple-instruction bugs detection

Figure 9: Experimental results on the RISC-V out-of-order superscalar processor
RIDECORE

6. Conclusion
• The first proposition of a universal property to cover
all types of logic bug in a processor

– Eliminating the need for manually writing complex
properties speeds up the verification process

–Greatly reducing the barrier to formal verification

